|
import streamlit as st |
|
from openai import OpenAI |
|
import os |
|
import sys |
|
from langchain.callbacks import StreamlitCallbackHandler |
|
from dotenv import load_dotenv, dotenv_values |
|
load_dotenv() |
|
|
|
|
|
if 'key' not in st.session_state: |
|
st.session_state['key'] = 'value' |
|
|
|
|
|
|
|
|
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1", |
|
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') |
|
) |
|
|
|
|
|
|
|
|
|
|
|
model_links ={ |
|
"Mistral":"mistralai/Mistral-7B-Instruct-v0.2", |
|
"Gemma":"google/gemma-7b-it", |
|
|
|
|
|
} |
|
|
|
|
|
model_info ={ |
|
"Mistral": |
|
{'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ |
|
\nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""", |
|
'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'}, |
|
"Gemma": |
|
{'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ |
|
\nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **7 billion parameters.** \n""", |
|
'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'}, |
|
|
|
} |
|
|
|
|
|
|
|
|
|
models =[key for key in model_links.keys()] |
|
|
|
|
|
selected_model = st.sidebar.selectbox("Select Model", models) |
|
|
|
|
|
st.sidebar.write(f"You're now chatting with **{selected_model}**") |
|
st.sidebar.markdown(model_info[selected_model]['description']) |
|
st.sidebar.image(model_info[selected_model]['logo']) |
|
|
|
|
|
|
|
repo_id = model_links[selected_model] |
|
|
|
|
|
|
|
st.title(f'ChatBot Using {selected_model}') |
|
|
|
|
|
if selected_model not in st.session_state: |
|
st.session_state[selected_model] = model_links[selected_model] |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
|
|
|
|
|
|
if prompt := st.chat_input("What is up?"): |
|
|
|
|
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
|
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
|
|
|
|
with st.chat_message("assistant"): |
|
st_callback = StreamlitCallbackHandler(st.container()) |
|
|
|
stream = client.chat.completions.create( |
|
model=model_links[selected_model], |
|
messages=[ |
|
{"role": m["role"], "content": m["content"]} |
|
for m in st.session_state.messages |
|
], |
|
temperature=0.5, |
|
stream=True, |
|
max_tokens=3000, |
|
) |
|
|
|
response = st.write_stream(stream) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |