Spaces:
Sleeping
Sleeping
from typing import Optional | |
from torch.nn import Sequential, Conv2d, ConvTranspose2d, Module | |
from tha3.nn.normalization import NormalizationLayerFactory | |
from tha3.nn.util import BlockArgs, wrap_conv_or_linear_module | |
def create_separable_conv3(in_channels: int, out_channels: int, | |
bias: bool = False, | |
initialization_method='he', | |
use_spectral_norm: bool = False) -> Module: | |
return Sequential( | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=False, groups=in_channels), | |
initialization_method, | |
use_spectral_norm), | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias), | |
initialization_method, | |
use_spectral_norm)) | |
def create_separable_conv7(in_channels: int, out_channels: int, | |
bias: bool = False, | |
initialization_method='he', | |
use_spectral_norm: bool = False) -> Module: | |
return Sequential( | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, in_channels, kernel_size=7, stride=1, padding=3, bias=False, groups=in_channels), | |
initialization_method, | |
use_spectral_norm), | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias), | |
initialization_method, | |
use_spectral_norm)) | |
def create_separable_conv3_block( | |
in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None): | |
if block_args is None: | |
block_args = BlockArgs() | |
return Sequential( | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=False, groups=in_channels), | |
block_args.initialization_method, | |
block_args.use_spectral_norm), | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), | |
block_args.initialization_method, | |
block_args.use_spectral_norm), | |
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory).create(out_channels, affine=True), | |
block_args.nonlinearity_factory.create()) | |
def create_separable_conv7_block( | |
in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None): | |
if block_args is None: | |
block_args = BlockArgs() | |
return Sequential( | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, in_channels, kernel_size=7, stride=1, padding=3, bias=False, groups=in_channels), | |
block_args.initialization_method, | |
block_args.use_spectral_norm), | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), | |
block_args.initialization_method, | |
block_args.use_spectral_norm), | |
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory).create(out_channels, affine=True), | |
block_args.nonlinearity_factory.create()) | |
def create_separable_downsample_block( | |
in_channels: int, out_channels: int, is_output_1x1: bool, block_args: Optional[BlockArgs] = None): | |
if block_args is None: | |
block_args = BlockArgs() | |
if is_output_1x1: | |
return Sequential( | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels), | |
block_args.initialization_method, | |
block_args.use_spectral_norm), | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), | |
block_args.initialization_method, | |
block_args.use_spectral_norm), | |
block_args.nonlinearity_factory.create()) | |
else: | |
return Sequential( | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels), | |
block_args.initialization_method, | |
block_args.use_spectral_norm), | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), | |
block_args.initialization_method, | |
block_args.use_spectral_norm), | |
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory) | |
.create(out_channels, affine=True), | |
block_args.nonlinearity_factory.create()) | |
def create_separable_upsample_block( | |
in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None): | |
if block_args is None: | |
block_args = BlockArgs() | |
return Sequential( | |
wrap_conv_or_linear_module( | |
ConvTranspose2d( | |
in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels), | |
block_args.initialization_method, | |
block_args.use_spectral_norm), | |
wrap_conv_or_linear_module( | |
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), | |
block_args.initialization_method, | |
block_args.use_spectral_norm), | |
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory) | |
.create(out_channels, affine=True), | |
block_args.nonlinearity_factory.create()) | |