Spaces:
Sleeping
Sleeping
kaitehtzeng
commited on
Commit
•
3e9f9c0
1
Parent(s):
c627d6a
Upload after_model_fitting.py
Browse files- after_model_fitting.py +324 -0
after_model_fitting.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""After model-fitting
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/#fileId=https%3A//storage.googleapis.com/kaggle-colab-exported-notebooks/after-model-fitting-b220d687-d8e5-4eb5-aafd-6a7e94d72073.ipynb%3FX-Goog-Algorithm%3DGOOG4-RSA-SHA256%26X-Goog-Credential%3Dgcp-kaggle-com%2540kaggle-161607.iam.gserviceaccount.com/20240128/auto/storage/goog4_request%26X-Goog-Date%3D20240128T102031Z%26X-Goog-Expires%3D259200%26X-Goog-SignedHeaders%3Dhost%26X-Goog-Signature%3D31877cdd720f27bacaa0efcdbe500b0697792af355976ce5280054514cedfe1be4c17db45656212f46a080c0a7f0369fbd3d051fd9be4a1275e0ea4bd55be70f65a681f6868cda1616ea83b3c65a363b81d4f59b864aa1aa82188ce4bbfca0d326422ccfaf462a4a322a86e8d752e875e2c7940fde584e9a1f0e25847bb77ad8e0131724aaec47d49e4ab42a1d2be2199c9053a26a40f3bf2a31489822ec9bb6dd378bec74e97866da9613ee7c54c6ed2ce69eee5fe34ea90293cb546e4cb1f84b3fcc6563aea8318d70e68b71e43b6d85e04a20e01980dd0c94bb837aa81446d9ecfdad1d56cbc1c940670eba9cf9dc647a8972ac13c6af15a28da735db694f
|
8 |
+
"""
|
9 |
+
|
10 |
+
# IMPORTANT: RUN THIS CELL IN ORDER TO IMPORT YOUR KAGGLE DATA SOURCES
|
11 |
+
# TO THE CORRECT LOCATION (/kaggle/input) IN YOUR NOTEBOOK,
|
12 |
+
# THEN FEEL FREE TO DELETE THIS CELL.
|
13 |
+
# NOTE: THIS NOTEBOOK ENVIRONMENT DIFFERS FROM KAGGLE'S PYTHON
|
14 |
+
# ENVIRONMENT SO THERE MAY BE MISSING LIBRARIES USED BY YOUR
|
15 |
+
# NOTEBOOK.
|
16 |
+
|
17 |
+
import os
|
18 |
+
import sys
|
19 |
+
from tempfile import NamedTemporaryFile
|
20 |
+
from urllib.request import urlopen
|
21 |
+
from urllib.parse import unquote, urlparse
|
22 |
+
from urllib.error import HTTPError
|
23 |
+
from zipfile import ZipFile
|
24 |
+
import tarfile
|
25 |
+
import shutil
|
26 |
+
|
27 |
+
CHUNK_SIZE = 40960
|
28 |
+
DATA_SOURCE_MAPPING = 'llm-detect-ai-generated-text:https%3A%2F%2Fstorage.googleapis.com%2Fkaggle-competitions-data%2Fkaggle-v2%2F61542%2F7516023%2Fbundle%2Farchive.zip%3FX-Goog-Algorithm%3DGOOG4-RSA-SHA256%26X-Goog-Credential%3Dgcp-kaggle-com%2540kaggle-161607.iam.gserviceaccount.com%252F20240128%252Fauto%252Fstorage%252Fgoog4_request%26X-Goog-Date%3D20240128T102030Z%26X-Goog-Expires%3D259200%26X-Goog-SignedHeaders%3Dhost%26X-Goog-Signature%3D038d55997cf8a860737caadb5837a5ebfaaf8477d4523afa1008387fe39c3a0c58c1ddc811284f559dbb78fd8e0f8230fca333e828951b69e5d935955b9163461cbd2f4f8b3f321dd0e73d767e2ef1a8ceb52512ef8f8d99fd19c92abf23c5a856ebd3d9ed4ee28b4c31b83427a7dc10052602e6d604e2c55f51d8e26da1e2dacb2e720476c3b874b22d5a03e8dde81374f227c87a024dea36e5973a7cabcccdcec804ba2fd73b5397d7d334be750de7ea9d4a2c2dcb12b93f4d75c18f063ebf02ff802e8912122dbd5b25695e7658bffc61997b9893958b304068a6e593653b14959b5355f4b8bb09d5d01768dda2839e271941fabfddf3cc5d8cbc5cd06746,argugpt:https%3A%2F%2Fstorage.googleapis.com%2Fkaggle-data-sets%2F3946973%2F6867914%2Fbundle%2Farchive.zip%3FX-Goog-Algorithm%3DGOOG4-RSA-SHA256%26X-Goog-Credential%3Dgcp-kaggle-com%2540kaggle-161607.iam.gserviceaccount.com%252F20240128%252Fauto%252Fstorage%252Fgoog4_request%26X-Goog-Date%3D20240128T102030Z%26X-Goog-Expires%3D259200%26X-Goog-SignedHeaders%3Dhost%26X-Goog-Signature%3D490ee9c880e3988ac2d0ceedc2936a72525b02e00898ca8feae1456ecdd6a542f952cedb096ce8474098bc29e06744cea2433b38c55accab1c9656f43d1baccccd2b36486e1075525b59c4f61326c5a819dc3f1bed35c76c73ef646f21d71bf8f3e8d7eb94e6c21068392293b9ba1e7fc8ac286eb68a727ac479118880aeff2c08f2e3e013aa0e888c099fb5a54a83920cebbf3ca011d818e66787427bfddf16de31a61552638a21cf583099a16a3cc660817297abdd494a926a3d58196778021bc6ea4b20d0923d7fb588d4857e95dce2979e3b246e6e282ef0b0fcabaecd2dd632c413f7f723e1178d080fc89fb31cd9a4564c84b11062fb9229d61d2dbf4e,daigt-proper-train-dataset:https%3A%2F%2Fstorage.googleapis.com%2Fkaggle-data-sets%2F3942644%2F6890527%2Fbundle%2Farchive.zip%3FX-Goog-Algorithm%3DGOOG4-RSA-SHA256%26X-Goog-Credential%3Dgcp-kaggle-com%2540kaggle-161607.iam.gserviceaccount.com%252F20240128%252Fauto%252Fstorage%252Fgoog4_request%26X-Goog-Date%3D20240128T102031Z%26X-Goog-Expires%3D259200%26X-Goog-SignedHeaders%3Dhost%26X-Goog-Signature%3D352a1df1e329069e50e0d64cb012986e5c75605e915c0b16383182a8618769c5ee4e3dd3f59448b11d64187657833f7f3f3e30c7c21fc343af2c51111074ea60e70e904833ef6a3aa4ad4b4864d89b924a3f063e71c41dbee1bdf1d453dc2cbe62e8819854b6e71040ca0014522e9651b9e8e6640c6caee259e981486a3ee0793ee7f56068c3d7efe66941530d2669bb8d3f989fe7b4056a81f76b0870fa2cf21cce8641b4f3e8c0b90fab4ef495464f2700bd99f20d4d94e86c11bc06301b1fc49a63bee1db180b733a12dc20b3b0f109c15b172c1cf0f91234176030f5c2241e7f646d99238ff63fc36ca1b0419463f38fe3bd477790b060c88c2bc9441ac0'
|
29 |
+
|
30 |
+
KAGGLE_INPUT_PATH='/kaggle/input'
|
31 |
+
KAGGLE_WORKING_PATH='/kaggle/working'
|
32 |
+
KAGGLE_SYMLINK='kaggle'
|
33 |
+
|
34 |
+
!umount /kaggle/input/ 2> /dev/null
|
35 |
+
shutil.rmtree('/kaggle/input', ignore_errors=True)
|
36 |
+
os.makedirs(KAGGLE_INPUT_PATH, 0o777, exist_ok=True)
|
37 |
+
os.makedirs(KAGGLE_WORKING_PATH, 0o777, exist_ok=True)
|
38 |
+
|
39 |
+
try:
|
40 |
+
os.symlink(KAGGLE_INPUT_PATH, os.path.join("..", 'input'), target_is_directory=True)
|
41 |
+
except FileExistsError:
|
42 |
+
pass
|
43 |
+
try:
|
44 |
+
os.symlink(KAGGLE_WORKING_PATH, os.path.join("..", 'working'), target_is_directory=True)
|
45 |
+
except FileExistsError:
|
46 |
+
pass
|
47 |
+
|
48 |
+
for data_source_mapping in DATA_SOURCE_MAPPING.split(','):
|
49 |
+
directory, download_url_encoded = data_source_mapping.split(':')
|
50 |
+
download_url = unquote(download_url_encoded)
|
51 |
+
filename = urlparse(download_url).path
|
52 |
+
destination_path = os.path.join(KAGGLE_INPUT_PATH, directory)
|
53 |
+
try:
|
54 |
+
with urlopen(download_url) as fileres, NamedTemporaryFile() as tfile:
|
55 |
+
total_length = fileres.headers['content-length']
|
56 |
+
print(f'Downloading {directory}, {total_length} bytes compressed')
|
57 |
+
dl = 0
|
58 |
+
data = fileres.read(CHUNK_SIZE)
|
59 |
+
while len(data) > 0:
|
60 |
+
dl += len(data)
|
61 |
+
tfile.write(data)
|
62 |
+
done = int(50 * dl / int(total_length))
|
63 |
+
sys.stdout.write(f"\r[{'=' * done}{' ' * (50-done)}] {dl} bytes downloaded")
|
64 |
+
sys.stdout.flush()
|
65 |
+
data = fileres.read(CHUNK_SIZE)
|
66 |
+
if filename.endswith('.zip'):
|
67 |
+
with ZipFile(tfile) as zfile:
|
68 |
+
zfile.extractall(destination_path)
|
69 |
+
else:
|
70 |
+
with tarfile.open(tfile.name) as tarfile:
|
71 |
+
tarfile.extractall(destination_path)
|
72 |
+
print(f'\nDownloaded and uncompressed: {directory}')
|
73 |
+
except HTTPError as e:
|
74 |
+
print(f'Failed to load (likely expired) {download_url} to path {destination_path}')
|
75 |
+
continue
|
76 |
+
except OSError as e:
|
77 |
+
print(f'Failed to load {download_url} to path {destination_path}')
|
78 |
+
continue
|
79 |
+
|
80 |
+
print('Data source import complete.')
|
81 |
+
|
82 |
+
# This Python 3 environment comes with many helpful analytics libraries installed
|
83 |
+
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
|
84 |
+
# For example, here's several helpful packages to load
|
85 |
+
|
86 |
+
import numpy as np # linear algebra
|
87 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
88 |
+
|
89 |
+
# Input data files are available in the read-only "../input/" directory
|
90 |
+
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
|
91 |
+
|
92 |
+
import os
|
93 |
+
for dirname, _, filenames in os.walk('/kaggle/input'):
|
94 |
+
for filename in filenames:
|
95 |
+
print(os.path.join(dirname, filename))
|
96 |
+
|
97 |
+
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All"
|
98 |
+
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
|
99 |
+
|
100 |
+
!git clone https://huggingface.co/spaces/kaitehtzeng/primary_app
|
101 |
+
|
102 |
+
"""## Import Necessary Library"""
|
103 |
+
|
104 |
+
import torch.nn.functional as F
|
105 |
+
from transformers import AutoModel
|
106 |
+
from transformers import AutoTokenizer
|
107 |
+
from tokenizers import Tokenizer, trainers, pre_tokenizers, models
|
108 |
+
from transformers import DebertaTokenizer
|
109 |
+
from sklearn.model_selection import train_test_split
|
110 |
+
import torch
|
111 |
+
import torch.nn as nn
|
112 |
+
import numpy as np
|
113 |
+
import pandas as pd
|
114 |
+
from tqdm.notebook import tqdm
|
115 |
+
import matplotlib.pyplot as plt
|
116 |
+
import nltk
|
117 |
+
from nltk.corpus import stopwords
|
118 |
+
from nltk.tokenize import word_tokenize
|
119 |
+
from nltk.tokenize.treebank import TreebankWordDetokenizer
|
120 |
+
from collections import Counter
|
121 |
+
#import spacy
|
122 |
+
import re
|
123 |
+
import gc
|
124 |
+
# ----------
|
125 |
+
import os
|
126 |
+
|
127 |
+
config = {
|
128 |
+
'model': '/kaggle/input/transformers-model-downloader-pytorch-tf2-0/microsoft/deberta-v3-base',
|
129 |
+
'dropout': 0.2,
|
130 |
+
'max_length': 512,
|
131 |
+
'batch_size':3,
|
132 |
+
'epochs': 1,
|
133 |
+
'lr': 1e-5,
|
134 |
+
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
|
135 |
+
'scheduler': 'CosineAnnealingWarmRestarts'
|
136 |
+
}
|
137 |
+
|
138 |
+
"""### Preparation
|
139 |
+
Comparing two essays. <br>
|
140 |
+
One predicted written by students, one predicted written by LLM
|
141 |
+
"""
|
142 |
+
|
143 |
+
train_essays = pd.read_csv("/kaggle/input/llm-detect-ai-generated-text/train_essays.csv")
|
144 |
+
external = pd.read_csv("/kaggle/input/daigt-proper-train-dataset/train_drcat_04.csv")
|
145 |
+
|
146 |
+
df = pd.concat([
|
147 |
+
external[external.source=="persuade_corpus"].sample(10000,random_state=101),
|
148 |
+
external[external.source!='persuade_corpus']
|
149 |
+
])
|
150 |
+
df = df.reset_index()
|
151 |
+
|
152 |
+
df['stratify'] = df.label.astype(str)+df.source.astype(str)
|
153 |
+
train_df,val_df = train_test_split(df,test_size=0.2,random_state = 101,stratify=df['stratify'])
|
154 |
+
train_df, val_df = train_df.reset_index(), val_df.reset_index()
|
155 |
+
|
156 |
+
import transformers
|
157 |
+
print('transformers version:', transformers.__version__)
|
158 |
+
|
159 |
+
#train_df,val_df = train_test_split(train_essays,test_size=0.2,random_state = 101)
|
160 |
+
#train_df, val_df = train_df.reset_index(), val_df.reset_index()
|
161 |
+
#print('dataframe shapes:',train_df.shape, val_df.shape)
|
162 |
+
|
163 |
+
tokenizer = AutoTokenizer.from_pretrained(config['model'])
|
164 |
+
tokenizer.train_new_from_iterator(train_essays['text'], 52000)
|
165 |
+
|
166 |
+
"""### Building Training Dataset and Loader"""
|
167 |
+
|
168 |
+
class EssayDataset:
|
169 |
+
def __init__(self, df, config,tokenizer, is_test = False):
|
170 |
+
self.df = df
|
171 |
+
self.tokenizer = tokenizer
|
172 |
+
self.is_test = is_test
|
173 |
+
self.config = config
|
174 |
+
|
175 |
+
def token_start(self, idx):
|
176 |
+
sample_text = self.df.loc[idx,'text']
|
177 |
+
|
178 |
+
tokenized = tokenizer.encode_plus(sample_text,
|
179 |
+
None,
|
180 |
+
add_special_tokens=True,
|
181 |
+
max_length= self.config['max_length'],
|
182 |
+
truncation=True,
|
183 |
+
padding="max_length"
|
184 |
+
)
|
185 |
+
|
186 |
+
inputs = {
|
187 |
+
"input_ids": torch.tensor(tokenized['input_ids'],dtype=torch.long),
|
188 |
+
"token_type_ids": torch.tensor(tokenized['token_type_ids'],dtype=torch.long),
|
189 |
+
"attention_mask": torch.tensor(tokenized['attention_mask'],dtype = torch.long)
|
190 |
+
}
|
191 |
+
|
192 |
+
return inputs
|
193 |
+
|
194 |
+
|
195 |
+
def __getitem__(self,idx):
|
196 |
+
|
197 |
+
input_text = self.token_start(idx)
|
198 |
+
|
199 |
+
if self.is_test:
|
200 |
+
return input_text
|
201 |
+
|
202 |
+
else:
|
203 |
+
labels = self.df.loc[idx,'label']
|
204 |
+
targets = {'labels' : torch.tensor(labels,dtype = torch.float32)}
|
205 |
+
|
206 |
+
return input_text,targets
|
207 |
+
|
208 |
+
def __len__(self):
|
209 |
+
return len(self.df)
|
210 |
+
|
211 |
+
eval_ds = EssayDataset(val_df,config,tokenizer = tokenizer,is_test=True)
|
212 |
+
|
213 |
+
eval_loader = torch.utils.data.DataLoader(eval_ds,
|
214 |
+
batch_size= config['batch_size'])
|
215 |
+
|
216 |
+
"""Build the Model"""
|
217 |
+
|
218 |
+
class mymodel(nn.Module):
|
219 |
+
|
220 |
+
def __init__(self,config):
|
221 |
+
super(mymodel,self).__init__()
|
222 |
+
|
223 |
+
self.model_name = config['model']
|
224 |
+
self.deberta = AutoModel.from_pretrained(self.model_name)
|
225 |
+
#12801 = len(tokenizer)
|
226 |
+
self.deberta.resize_token_embeddings(128001)
|
227 |
+
self.dropout = nn.Dropout(config['dropout'])
|
228 |
+
self.fn0 = nn.Linear(self.deberta.config.hidden_size,256)
|
229 |
+
self.fn2 = nn.Linear(256,1)
|
230 |
+
self.pooling = MeanPooling()
|
231 |
+
|
232 |
+
def forward(self, input):
|
233 |
+
output = self.deberta(**input,return_dict = True)
|
234 |
+
output = self.pooling(output['last_hidden_state'],input['attention_mask'])
|
235 |
+
output = self.dropout(output)
|
236 |
+
output = self.fn0(output)
|
237 |
+
output = self.dropout(output)
|
238 |
+
output = self.fn2(output)
|
239 |
+
output = torch.sigmoid(output)
|
240 |
+
return output
|
241 |
+
|
242 |
+
import torch.nn as nn
|
243 |
+
class MeanPooling(nn.Module):
|
244 |
+
def __init__(self):
|
245 |
+
super(MeanPooling,self).__init__()
|
246 |
+
|
247 |
+
|
248 |
+
def forward(self,last_hidden_state, attention_mask):
|
249 |
+
new_weight = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
250 |
+
final = torch.sum(new_weight*last_hidden_state,1)
|
251 |
+
total_weight = new_weight.sum(1)
|
252 |
+
total_weight = torch.clamp(total_weight, min = 1e-9)
|
253 |
+
mean_embedding = final/total_weight
|
254 |
+
|
255 |
+
return mean_embedding
|
256 |
+
|
257 |
+
model = mymodel(config).to(device=config['device'])
|
258 |
+
model.load_state_dict(torch.load('/kaggle/input/fine-tune-model/my_model.pth'))
|
259 |
+
model.eval()
|
260 |
+
|
261 |
+
#preds = []
|
262 |
+
#for (inputs) in eval_loader:
|
263 |
+
# inputs = {k:inputs[k].to(device=config['device']) for k in inputs.keys()}
|
264 |
+
#
|
265 |
+
# outputs = model(inputs)
|
266 |
+
# preds.append(outputs.detach().cpu())
|
267 |
+
|
268 |
+
#preds = torch.concat(preds)
|
269 |
+
|
270 |
+
#val_df['preds'] = preds.numpy()
|
271 |
+
#val_df['AI'] = val_df['preds']>0.5
|
272 |
+
|
273 |
+
#sample_predict_AI = val_df.loc[val_df['AI'] == True].iloc[0]['text']
|
274 |
+
#sample_predict_student = val_df.loc[val_df['AI'] == False].iloc[0]['text']
|
275 |
+
|
276 |
+
#sample_predict_AI
|
277 |
+
|
278 |
+
#sample_predict_student
|
279 |
+
|
280 |
+
def trial(text):
|
281 |
+
|
282 |
+
tokenized = tokenizer.encode_plus(text,
|
283 |
+
None,
|
284 |
+
add_special_tokens=True,
|
285 |
+
max_length= config['max_length'],
|
286 |
+
truncation=True,
|
287 |
+
padding="max_length"
|
288 |
+
)
|
289 |
+
inputs = {
|
290 |
+
"input_ids": torch.tensor(tokenized['input_ids'],dtype=torch.long),
|
291 |
+
"token_type_ids": torch.tensor(tokenized['token_type_ids'],dtype=torch.long),
|
292 |
+
"attention_mask": torch.tensor(tokenized['attention_mask'],dtype = torch.long)
|
293 |
+
}
|
294 |
+
inputs = {k:inputs[k].unsqueeze(0).to(device=config['device']) for k in inputs.keys()}
|
295 |
+
|
296 |
+
if model(inputs).item()>=0.5:
|
297 |
+
return "AI"
|
298 |
+
else:
|
299 |
+
return "Student"
|
300 |
+
|
301 |
+
!pip install -q gradio==3.45.0
|
302 |
+
|
303 |
+
import gradio as gr
|
304 |
+
|
305 |
+
trial('hello fuck you')
|
306 |
+
|
307 |
+
|
308 |
+
|
309 |
+
demo = gr.Interface(
|
310 |
+
fn=trial,
|
311 |
+
inputs=gr.Textbox(placeholder="..."),
|
312 |
+
outputs="textbox"
|
313 |
+
)
|
314 |
+
|
315 |
+
demo.launch(share=True)
|
316 |
+
|
317 |
+
"""### Model
|
318 |
+
Fine tuning the deberta-v3-base model with new-added layers
|
319 |
+
|
320 |
+
The model is later used to participate the Kaggle Competition:LLM - Detect AI Generated Text.
|
321 |
+
The Auc of the model is 0.75
|
322 |
+
"""
|
323 |
+
|
324 |
+
!git push
|