primary_app / app.py
kaitehtzeng's picture
Update app.py
f0d74e9 verified
raw
history blame
7.25 kB
# -*- coding: utf-8 -*-
"""After model-fitting
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/#fileId=https%3A//storage.googleapis.com/kaggle-colab-exported-notebooks/after-model-fitting-b220d687-d8e5-4eb5-aafd-6a7e94d72073.ipynb%3FX-Goog-Algorithm%3DGOOG4-RSA-SHA256%26X-Goog-Credential%3Dgcp-kaggle-com%2540kaggle-161607.iam.gserviceaccount.com/20240128/auto/storage/goog4_request%26X-Goog-Date%3D20240128T102031Z%26X-Goog-Expires%3D259200%26X-Goog-SignedHeaders%3Dhost%26X-Goog-Signature%3D31877cdd720f27bacaa0efcdbe500b0697792af355976ce5280054514cedfe1be4c17db45656212f46a080c0a7f0369fbd3d051fd9be4a1275e0ea4bd55be70f65a681f6868cda1616ea83b3c65a363b81d4f59b864aa1aa82188ce4bbfca0d326422ccfaf462a4a322a86e8d752e875e2c7940fde584e9a1f0e25847bb77ad8e0131724aaec47d49e4ab42a1d2be2199c9053a26a40f3bf2a31489822ec9bb6dd378bec74e97866da9613ee7c54c6ed2ce69eee5fe34ea90293cb546e4cb1f84b3fcc6563aea8318d70e68b71e43b6d85e04a20e01980dd0c94bb837aa81446d9ecfdad1d56cbc1c940670eba9cf9dc647a8972ac13c6af15a28da735db694f
"""
# IMPORTANT: RUN THIS CELL IN ORDER TO IMPORT YOUR KAGGLE DATA SOURCES
# TO THE CORRECT LOCATION (/kaggle/input) IN YOUR NOTEBOOK,
# THEN FEEL FREE TO DELETE THIS CELL.
# NOTE: THIS NOTEBOOK ENVIRONMENT DIFFERS FROM KAGGLE'S PYTHON
# ENVIRONMENT SO THERE MAY BE MISSING LIBRARIES USED BY YOUR
# NOTEBOOK.
import os
import sys
from tempfile import NamedTemporaryFile
from urllib.request import urlopen
from urllib.parse import unquote, urlparse
from urllib.error import HTTPError
from zipfile import ZipFile
import tarfile
import shutil
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
"""## Import Necessary Library"""
import torch.nn.functional as F
from transformers import AutoModel
from transformers import AutoTokenizer
from tokenizers import Tokenizer, trainers, pre_tokenizers, models
from transformers import DebertaTokenizer
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from tqdm.notebook import tqdm
import matplotlib.pyplot as plt
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.tokenize.treebank import TreebankWordDetokenizer
from collections import Counter
#import spacy
import re
import gc
# ----------
import os
config = {
'model': 'kaitehtzeng/primary_app/microsoft/deberta-v3-base',
'dropout': 0.2,
'max_length': 512,
'batch_size':3,
'epochs': 1,
'lr': 1e-5,
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
'scheduler': 'CosineAnnealingWarmRestarts'
}
"""### Preparation
Comparing two essays. <br>
One predicted written by students, one predicted written by LLM
"""
train_essays = pd.read_csv("kaitehtzeng/primary_app/train_essays.csv")
import transformers
print('transformers version:', transformers.__version__)
#train_df,val_df = train_test_split(train_essays,test_size=0.2,random_state = 101)
#train_df, val_df = train_df.reset_index(), val_df.reset_index()
#print('dataframe shapes:',train_df.shape, val_df.shape)
tokenizer = AutoTokenizer.from_pretrained(config['model'])
tokenizer.train_new_from_iterator(train_essays['text'], 52000)
"""Build the Model"""
class mymodel(nn.Module):
def __init__(self,config):
super(mymodel,self).__init__()
self.model_name = config['model']
self.deberta = AutoModel.from_pretrained(self.model_name)
#128001 = len(tokenizer)
self.deberta.resize_token_embeddings(128001)
self.dropout = nn.Dropout(config['dropout'])
self.fn0 = nn.Linear(self.deberta.config.hidden_size,256)
self.fn2 = nn.Linear(256,1)
self.pooling = MeanPooling()
def forward(self, input):
output = self.deberta(**input,return_dict = True)
output = self.pooling(output['last_hidden_state'],input['attention_mask'])
output = self.dropout(output)
output = self.fn0(output)
output = self.dropout(output)
output = self.fn2(output)
output = torch.sigmoid(output)
return output
import torch.nn as nn
class MeanPooling(nn.Module):
def __init__(self):
super(MeanPooling,self).__init__()
def forward(self,last_hidden_state, attention_mask):
new_weight = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
final = torch.sum(new_weight*last_hidden_state,1)
total_weight = new_weight.sum(1)
total_weight = torch.clamp(total_weight, min = 1e-9)
mean_embedding = final/total_weight
return mean_embedding
model = mymodel(config).to(device=config['device'])
model.load_state_dict(torch.load('kaitehtzeng/primary_app/my_model.pth'))
model.eval()
#preds = []
#for (inputs) in eval_loader:
# inputs = {k:inputs[k].to(device=config['device']) for k in inputs.keys()}
#
# outputs = model(inputs)
# preds.append(outputs.detach().cpu())
#preds = torch.concat(preds)
#val_df['preds'] = preds.numpy()
#val_df['AI'] = val_df['preds']>0.5
#sample_predict_AI = val_df.loc[val_df['AI'] == True].iloc[0]['text']
#sample_predict_student = val_df.loc[val_df['AI'] == False].iloc[0]['text']
#sample_predict_AI
#sample_predict_student
def trial(text):
tokenized = tokenizer.encode_plus(text,
None,
add_special_tokens=True,
max_length= config['max_length'],
truncation=True,
padding="max_length"
)
inputs = {
"input_ids": torch.tensor(tokenized['input_ids'],dtype=torch.long),
"token_type_ids": torch.tensor(tokenized['token_type_ids'],dtype=torch.long),
"attention_mask": torch.tensor(tokenized['attention_mask'],dtype = torch.long)
}
inputs = {k:inputs[k].unsqueeze(0).to(device=config['device']) for k in inputs.keys()}
if model(inputs).item()>=0.5:
return "AI"
else:
return "Student"
pip install -q gradio==3.45.0
import gradio as gr
demo = gr.Interface(
fn=trial,
inputs=gr.Textbox(placeholder="..."),
outputs="textbox"
)
demo.launch(share=True)
"""### Model
Fine tuning the deberta-v3-base model with new-added layers
The model is later used to participate the Kaggle Competition:LLM - Detect AI Generated Text.
The Auc of the model is 0.75
"""