Spaces:
Build error
Build error
### 1. Imports and class names setup ### | |
import gradio as gr | |
import os | |
import torch | |
from model import create_vit_b_16_swag | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
class_names = ['apple_pie', | |
'baby_back_ribs', | |
'baklava', | |
'beef_carpaccio', | |
'beef_tartare', | |
'beet_salad', | |
'beignets', | |
'bibimbap', | |
'bread_pudding', | |
'breakfast_burrito', | |
'bruschetta', | |
'caesar_salad', | |
'cannoli', | |
'caprese_salad', | |
'carrot_cake', | |
'ceviche', | |
'cheese_plate', | |
'cheesecake', | |
'chicken_curry', | |
'chicken_quesadilla', | |
'chicken_wings', | |
'chocolate_cake', | |
'chocolate_mousse', | |
'churros', | |
'clam_chowder', | |
'club_sandwich', | |
'crab_cakes', | |
'creme_brulee', | |
'croque_madame', | |
'cup_cakes', | |
'deviled_eggs', | |
'donuts', | |
'dumplings', | |
'edamame', | |
'eggs_benedict', | |
'escargots', | |
'falafel', | |
'filet_mignon', | |
'fish_and_chips', | |
'foie_gras', | |
'french_fries', | |
'french_onion_soup', | |
'french_toast', | |
'fried_calamari', | |
'fried_rice', | |
'frozen_yogurt', | |
'garlic_bread', | |
'gnocchi', | |
'greek_salad', | |
'grilled_cheese_sandwich', | |
'grilled_salmon', | |
'guacamole', | |
'gyoza', | |
'hamburger', | |
'hot_and_sour_soup', | |
'hot_dog', | |
'huevos_rancheros', | |
'hummus', | |
'ice_cream', | |
'lasagna', | |
'lobster_bisque', | |
'lobster_roll_sandwich', | |
'macaroni_and_cheese', | |
'macarons', | |
'miso_soup', | |
'mussels', | |
'nachos', | |
'omelette', | |
'onion_rings', | |
'oysters', | |
'pad_thai', | |
'paella', | |
'pancakes', | |
'panna_cotta', | |
'peking_duck', | |
'pho', | |
'pizza', | |
'pork_chop', | |
'poutine', | |
'prime_rib', | |
'pulled_pork_sandwich', | |
'ramen', | |
'ravioli', | |
'red_velvet_cake', | |
'risotto', | |
'samosa', | |
'sashimi', | |
'scallops', | |
'seaweed_salad', | |
'shrimp_and_grits', | |
'spaghetti_bolognese', | |
'spaghetti_carbonara', | |
'spring_rolls', | |
'steak', | |
'strawberry_shortcake', | |
'sushi', | |
'tacos', | |
'takoyaki', | |
'tiramisu', | |
'tuna_tartare', | |
'waffles'] | |
### 2. Model and transforms preparation ### | |
# Create EffNetB0 model | |
vit_b_16_swag, vit_b_16_swag_transforms = create_vit_b_16_swag() | |
# Load saved weights | |
vit_b_16_swag.load_state_dict( | |
torch.load( | |
f="vit_b_16_swag_20percent_10epoch.pth", | |
map_location=torch.device("cpu"), # load to CPU | |
) | |
) | |
### 3. Predict function ### | |
# Create predict function | |
def predict(img) -> Tuple[Dict, float]: | |
"""Transforms and performs a prediction on img and returns prediction and time taken. | |
""" | |
# Start the timer | |
start_time = timer() | |
# Transform the target image and add a batch dimension | |
img = vit_b_16_swag_transforms(img).unsqueeze(0) | |
# Put model into evaluation mode and turn on inference mode | |
vit_b_16_swag.eval() | |
with torch.inference_mode(): | |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities | |
pred_probs = torch.softmax(vit_b_16_swag(img), dim=1) | |
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Calculate the prediction time | |
pred_time = round(timer() - start_time, 5) | |
# Return the prediction dictionary and prediction time | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio app ### | |
# Create title, description and article strings | |
title = "Food Classifier V1" | |
description = " 20 Percent Food 101 on Vit_b_16 SWAG" | |
article = "Created at google collab. Documentation at https://medium.com/me/stories/public, Code repository at https://github.com/Alyxx-The-Sniper/CNN " | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs=gr.Image(type="pil"), # what are the inputs? | |
outputs=[gr.Label(num_top_classes=4, label="Predictions"), # what are the outputs? | |
gr.Number(label="Prediction time (s)")], | |
# our fn has two outputs, therefore we have two outputs | |
# Create examples list from "examples/" directory | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch() | |