Spaces:
Build error
Build error
alyxx
commited on
Commit
•
e8749a9
1
Parent(s):
1425564
adding necessary files -kai
Browse files- app.py +79 -0
- effnetb0_data20_10epoch.pth +3 -0
- examples/2740844.jpg +0 -0
- examples/387707.jpg +0 -0
- examples/529481.jpg +0 -0
- model.py +23 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 1. Imports and class names setup ###
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from model import create_effnetb0
|
7 |
+
from timeit import default_timer as timer
|
8 |
+
from typing import Tuple, Dict
|
9 |
+
|
10 |
+
# Setup class names
|
11 |
+
class_names = ['cup_cakes', 'donuts', 'french_fries', 'ice_cream']
|
12 |
+
|
13 |
+
### 2. Model and transforms preparation ###
|
14 |
+
|
15 |
+
# Create EffNetB0 model
|
16 |
+
effnetb0, effnetb0_transforms = create_effnetb0()
|
17 |
+
|
18 |
+
# Load saved weights
|
19 |
+
effnetb0.load_state_dict(
|
20 |
+
torch.load(
|
21 |
+
f="effnetb0_data20_10epoch.pth",
|
22 |
+
map_location=torch.device("cpu"), # load to CPU
|
23 |
+
)
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
### 3. Predict function ###
|
28 |
+
|
29 |
+
# Create predict function
|
30 |
+
def predict(img) -> Tuple[Dict, float]:
|
31 |
+
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
32 |
+
"""
|
33 |
+
# Start the timer
|
34 |
+
start_time = timer()
|
35 |
+
|
36 |
+
# Transform the target image and add a batch dimension
|
37 |
+
img = effnetb0_transforms(img).unsqueeze(0)
|
38 |
+
|
39 |
+
# Put model into evaluation mode and turn on inference mode
|
40 |
+
effnetb0.eval()
|
41 |
+
with torch.inference_mode():
|
42 |
+
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
43 |
+
pred_probs = torch.softmax(effnetb0(img), dim=1)
|
44 |
+
|
45 |
+
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
46 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
47 |
+
|
48 |
+
# Calculate the prediction time
|
49 |
+
pred_time = round(timer() - start_time, 5)
|
50 |
+
|
51 |
+
# Return the prediction dictionary and prediction time
|
52 |
+
return pred_labels_and_probs, pred_time
|
53 |
+
|
54 |
+
|
55 |
+
### 4. Gradio app ###
|
56 |
+
|
57 |
+
# Create title, description and article strings
|
58 |
+
title = "Food Classifier"
|
59 |
+
description = "An EfficientNetB0 feature extractor computer vision model to classify images of French_fries, Cup_cakes, Ice_Cream, and Donuts."
|
60 |
+
article = "Created at google collab. Documentation at https://medium.com/me/stories/public, Code repository at https://github.com/Alyxx-The-Sniper/CNN "
|
61 |
+
|
62 |
+
# Create examples list from "examples/" directory
|
63 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
64 |
+
|
65 |
+
# Create the Gradio demo
|
66 |
+
demo = gr.Interface(fn=predict, # mapping function from input to output
|
67 |
+
inputs=gr.Image(type="pil"), # what are the inputs?
|
68 |
+
outputs=[gr.Label(num_top_classes=4, label="Predictions"), # what are the outputs?
|
69 |
+
gr.Number(label="Prediction time (s)")],
|
70 |
+
# our fn has two outputs, therefore we have two outputs
|
71 |
+
# Create examples list from "examples/" directory
|
72 |
+
examples=example_list,
|
73 |
+
title=title,
|
74 |
+
description=description,
|
75 |
+
article=article)
|
76 |
+
|
77 |
+
# Launch the demo!
|
78 |
+
demo.launch()
|
79 |
+
|
effnetb0_data20_10epoch.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:572112ada0d654f7b606531764fb846badcb322f690b4343a92720b3d68daa3f
|
3 |
+
size 16354321
|
examples/2740844.jpg
ADDED
examples/387707.jpg
ADDED
examples/529481.jpg
ADDED
model.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchvision
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
def create_effnetb0(num_classes:int=4, seed:int=42):
|
5 |
+
# 1. Get the base mdoel with pretrained weights and send to target device
|
6 |
+
weights = torchvision.models.EfficientNet_B0_Weights.DEFAULT
|
7 |
+
transforms = weights.transforms()
|
8 |
+
model = torchvision.models.efficientnet_b0(weights=weights)#.to(device)
|
9 |
+
|
10 |
+
# 2. Freeze the base model layers
|
11 |
+
for param in model.features.parameters():
|
12 |
+
param.requires_grad = False
|
13 |
+
|
14 |
+
# 3. Change the classifier head
|
15 |
+
model.classifier = nn.Sequential(
|
16 |
+
nn.Dropout(p=0.2),
|
17 |
+
nn.Linear(in_features=1280, out_features=num_classes)
|
18 |
+
)#.to(device)
|
19 |
+
|
20 |
+
# 5. Give the model a name
|
21 |
+
model.name = "effnetb0"
|
22 |
+
print(f"[INFO] Created new {model.name} model.")
|
23 |
+
return model, transforms
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.0
|
2 |
+
torchvision==0.13.0
|
3 |
+
gradio==3.1.4
|