Spaces:
Runtime error
Runtime error
import gradio as gr | |
from NDETCStemmer import NDETCStemmer | |
num_text_process_limit = 100 | |
markdown_top_info = """ | |
# [NDETCStemmer](https://huggingface.co/kaenova/NDETCStemmer) spaces | |
Easily use the model with huggingface π€ and gradio interface! | |
Call by API is also available. Check the bottom of the page on 'Use via API π' | |
""" | |
stemmer = NDETCStemmer() | |
process_counter = 0 | |
def process_single_text(text_input: "str"): | |
# Split input | |
if text_input.strip() == "": | |
return "" | |
results = stemmer.stem(text_input) | |
# Logging | |
global process_counter | |
process_counter = process_counter + 1 | |
print(f"INFO: Number of processed text {process_counter}") | |
return results | |
with gr.Blocks() as demo: | |
gr.Markdown(markdown_top_info) | |
# Single Input | |
with gr.Column(): | |
input_text = gr.Textbox( | |
label="Input Text", | |
info=f"Text to stem.", | |
lines=5, | |
value="""bibirnya memerah tangannya jadi selengket madu dan ia berkata 'Boleh saya memerah lembu ini?'""", | |
) | |
single_text_button = gr.Button("Stem!") | |
results_text = gr.Textbox( | |
label=f"Result", | |
interactive=False, | |
) | |
single_text_button.click( | |
process_single_text, | |
inputs=[input_text], | |
outputs=[results_text], | |
api_name="process" | |
) | |
if __name__ == "__main__": | |
demo.queue(concurrency_count=100) | |
demo.launch() | |