kaenova's picture
logging
12d271a
import gradio as gr
from NDETCStemmer import NDETCStemmer
num_text_process_limit = 100
markdown_top_info = """
# [NDETCStemmer](https://huggingface.co/kaenova/NDETCStemmer) spaces
Easily use the model with huggingface πŸ€— and gradio interface!
Call by API is also available. Check the bottom of the page on 'Use via API πŸš€'
"""
stemmer = NDETCStemmer()
process_counter = 0
def process_single_text(text_input: "str"):
# Split input
if text_input.strip() == "":
return ""
results = stemmer.stem(text_input)
# Logging
global process_counter
process_counter = process_counter + 1
print(f"INFO: Number of processed text {process_counter}")
return results
with gr.Blocks() as demo:
gr.Markdown(markdown_top_info)
# Single Input
with gr.Column():
input_text = gr.Textbox(
label="Input Text",
info=f"Text to stem.",
lines=5,
value="""bibirnya memerah tangannya jadi selengket madu dan ia berkata 'Boleh saya memerah lembu ini?'""",
)
single_text_button = gr.Button("Stem!")
results_text = gr.Textbox(
label=f"Result",
interactive=False,
)
single_text_button.click(
process_single_text,
inputs=[input_text],
outputs=[results_text],
api_name="process"
)
if __name__ == "__main__":
demo.queue(concurrency_count=100)
demo.launch()