Spaces:
Build error
Build error
#!/usr/bin/env python | |
""" | |
This script runs a Gradio App for the Open-Sora model. | |
Usage: | |
python demo.py <config-path> | |
""" | |
import argparse | |
import datetime | |
import importlib | |
import os | |
import subprocess | |
import sys | |
from tempfile import NamedTemporaryFile | |
import spaces | |
import torch | |
import gradio as gr | |
MODEL_TYPES = ["v1.2-stage3"] | |
WATERMARK_PATH = "./assets/images/watermark/watermark.png" | |
CONFIG_MAP = { | |
"v1.2-stage3": "configs/opensora-v1-2/inference/sample.py", | |
} | |
HF_STDIT_MAP = {"v1.2-stage3": "hpcai-tech/OpenSora-STDiT-v3"} | |
# ============================ | |
# Prepare Runtime Environment | |
# ============================ | |
def install_dependencies(enable_optimization=False): | |
""" | |
Install the required dependencies for the demo if they are not already installed. | |
""" | |
def _is_package_available(name) -> bool: | |
try: | |
importlib.import_module(name) | |
return True | |
except (ImportError, ModuleNotFoundError): | |
return False | |
if enable_optimization: | |
# install flash attention | |
if not _is_package_available("flash_attn"): | |
subprocess.run( | |
f"{sys.executable} -m pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
# install apex for fused layernorm | |
if not _is_package_available("apex"): | |
subprocess.run( | |
f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git', | |
shell=True, | |
) | |
# install ninja | |
if not _is_package_available("ninja"): | |
subprocess.run(f"{sys.executable} -m pip install ninja", shell=True) | |
# install xformers | |
if not _is_package_available("xformers"): | |
subprocess.run( | |
f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers", | |
shell=True, | |
) | |
# ============================ | |
# Model-related | |
# ============================ | |
def read_config(config_path): | |
""" | |
Read the configuration file. | |
""" | |
from mmengine.config import Config | |
return Config.fromfile(config_path) | |
def build_models(model_type, config, enable_optimization=False): | |
""" | |
Build the models for the given model type and configuration. | |
""" | |
# build vae | |
from opensora.registry import MODELS, build_module | |
vae = build_module(config.vae, MODELS).cuda() | |
# build text encoder | |
text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32 | |
text_encoder.t5.model = text_encoder.t5.model.cuda() | |
# build stdit | |
# we load model from HuggingFace directly so that we don't need to | |
# handle model download logic in HuggingFace Space | |
from opensora.models.stdit.stdit3 import STDiT3 | |
stdit = STDiT3.from_pretrained(HF_STDIT_MAP[model_type]) | |
stdit = stdit.cuda() | |
# build scheduler | |
from opensora.registry import SCHEDULERS | |
scheduler = build_module(config.scheduler, SCHEDULERS) | |
# hack for classifier-free guidance | |
text_encoder.y_embedder = stdit.y_embedder | |
# move modelst to device | |
vae = vae.to(torch.bfloat16).eval() | |
text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32 | |
stdit = stdit.to(torch.bfloat16).eval() | |
# clear cuda | |
torch.cuda.empty_cache() | |
return vae, text_encoder, stdit, scheduler | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model-type", | |
default="v1.2-stage3", | |
choices=MODEL_TYPES, | |
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}", | |
) | |
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder") | |
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.") | |
parser.add_argument("--host", default="0.0.0.0", type=str, help="The host to run the Gradio App on.") | |
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.") | |
parser.add_argument( | |
"--enable-optimization", | |
action="store_true", | |
help="Whether to enable optimization such as flash attention and fused layernorm", | |
) | |
return parser.parse_args() | |
# ============================ | |
# Main Gradio Script | |
# ============================ | |
# as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text | |
# so we can't pass the models to `run_inference` as arguments. | |
# instead, we need to define them globally so that we can access these models inside `run_inference` | |
# read config | |
args = parse_args() | |
config = read_config(CONFIG_MAP[args.model_type]) | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
# make outputs dir | |
os.makedirs(args.output, exist_ok=True) | |
# disable torch jit as it can cause failure in gradio SDK | |
# gradio sdk uses torch with cuda 11.3 | |
torch.jit._state.disable() | |
# set up | |
install_dependencies(enable_optimization=args.enable_optimization) | |
# import after installation | |
from opensora.datasets import IMG_FPS, save_sample | |
from opensora.datasets.aspect import get_image_size, get_num_frames | |
from opensora.models.text_encoder.t5 import text_preprocessing | |
from opensora.utils.inference_utils import ( | |
add_watermark, | |
append_generated, | |
append_score_to_prompts, | |
apply_mask_strategy, | |
collect_references_batch, | |
dframe_to_frame, | |
extract_json_from_prompts, | |
extract_prompts_loop, | |
get_random_prompt_by_openai, | |
has_openai_key, | |
merge_prompt, | |
prepare_multi_resolution_info, | |
refine_prompts_by_openai, | |
split_prompt, | |
has_openai_key | |
) | |
from opensora.utils.misc import to_torch_dtype | |
# some global variables | |
dtype = to_torch_dtype(config.dtype) | |
device = torch.device("cuda") | |
# build model | |
vae, text_encoder, stdit, scheduler = build_models( | |
args.model_type, config, enable_optimization=args.enable_optimization | |
) | |
def run_inference( | |
mode, | |
prompt_text, | |
resolution, | |
aspect_ratio, | |
length, | |
motion_strength, | |
aesthetic_score, | |
use_motion_strength, | |
use_aesthetic_score, | |
camera_motion, | |
reference_image, | |
refine_prompt, | |
fps, | |
num_loop, | |
seed, | |
sampling_steps, | |
cfg_scale, | |
): | |
if prompt_text is None or prompt_text == "": | |
gr.Warning("Your prompt is empty, please enter a valid prompt") | |
return None | |
torch.manual_seed(seed) | |
with torch.inference_mode(): | |
# ====================== | |
# 1. Preparation arguments | |
# ====================== | |
# parse the inputs | |
# frame_interval must be 1 so we ignore it here | |
image_size = get_image_size(resolution, aspect_ratio) | |
# compute generation parameters | |
if mode == "Text2Image": | |
num_frames = 1 | |
fps = IMG_FPS | |
else: | |
num_frames = config.num_frames | |
num_frames = get_num_frames(length) | |
condition_frame_length = int(num_frames / 17 * 5 / 3) | |
condition_frame_edit = 0.0 | |
input_size = (num_frames, *image_size) | |
latent_size = vae.get_latent_size(input_size) | |
multi_resolution = "OpenSora" | |
align = 5 | |
# == prepare mask strategy == | |
if mode == "Text2Image": | |
mask_strategy = [None] | |
elif mode == "Text2Video": | |
if reference_image is not None: | |
mask_strategy = ["0"] | |
else: | |
mask_strategy = [None] | |
else: | |
raise ValueError(f"Invalid mode: {mode}") | |
# == prepare reference == | |
if mode == "Text2Image": | |
refs = [""] | |
elif mode == "Text2Video": | |
if reference_image is not None: | |
# save image to disk | |
from PIL import Image | |
im = Image.fromarray(reference_image) | |
temp_file = NamedTemporaryFile(suffix=".png") | |
im.save(temp_file.name) | |
refs = [temp_file.name] | |
else: | |
refs = [""] | |
else: | |
raise ValueError(f"Invalid mode: {mode}") | |
# == get json from prompts == | |
batch_prompts = [prompt_text] | |
batch_prompts, refs, mask_strategy = extract_json_from_prompts(batch_prompts, refs, mask_strategy) | |
# == get reference for condition == | |
refs = collect_references_batch(refs, vae, image_size) | |
# == multi-resolution info == | |
model_args = prepare_multi_resolution_info( | |
multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype | |
) | |
# == process prompts step by step == | |
# 0. split prompt | |
# each element in the list is [prompt_segment_list, loop_idx_list] | |
batched_prompt_segment_list = [] | |
batched_loop_idx_list = [] | |
for prompt in batch_prompts: | |
prompt_segment_list, loop_idx_list = split_prompt(prompt) | |
batched_prompt_segment_list.append(prompt_segment_list) | |
batched_loop_idx_list.append(loop_idx_list) | |
# 1. refine prompt by openai | |
if refine_prompt: | |
# check if openai key is provided | |
if not has_openai_key(): | |
gr.Warning("OpenAI API key is not provided, the prompt will not be enhanced.") | |
else: | |
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list): | |
batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list) | |
# process scores | |
aesthetic_score = aesthetic_score if use_aesthetic_score else None | |
motion_strength = motion_strength if use_motion_strength and mode != "Text2Image" else None | |
camera_motion = None if camera_motion == "none" or mode == "Text2Image" else camera_motion | |
# 2. append score | |
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list): | |
batched_prompt_segment_list[idx] = append_score_to_prompts( | |
prompt_segment_list, | |
aes=aesthetic_score, | |
flow=motion_strength, | |
camera_motion=camera_motion, | |
) | |
# 3. clean prompt with T5 | |
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list): | |
batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list] | |
# 4. merge to obtain the final prompt | |
batch_prompts = [] | |
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list): | |
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list)) | |
# ========================= | |
# Generate image/video | |
# ========================= | |
video_clips = [] | |
for loop_i in range(num_loop): | |
# 4.4 sample in hidden space | |
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i) | |
# == loop == | |
if loop_i > 0: | |
refs, mask_strategy = append_generated( | |
vae, video_clips[-1], refs, mask_strategy, loop_i, condition_frame_length, condition_frame_edit | |
) | |
# == sampling == | |
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype) | |
masks = apply_mask_strategy(z, refs, mask_strategy, loop_i, align=align) | |
# 4.6. diffusion sampling | |
# hack to update num_sampling_steps and cfg_scale | |
scheduler_kwargs = config.scheduler.copy() | |
scheduler_kwargs.pop("type") | |
scheduler_kwargs["num_sampling_steps"] = sampling_steps | |
scheduler_kwargs["cfg_scale"] = cfg_scale | |
scheduler.__init__(**scheduler_kwargs) | |
samples = scheduler.sample( | |
stdit, | |
text_encoder, | |
z=z, | |
prompts=batch_prompts_loop, | |
device=device, | |
additional_args=model_args, | |
progress=True, | |
mask=masks, | |
) | |
samples = vae.decode(samples.to(dtype), num_frames=num_frames) | |
video_clips.append(samples) | |
# ========================= | |
# Save output | |
# ========================= | |
video_clips = [val[0] for val in video_clips] | |
for i in range(1, num_loop): | |
video_clips[i] = video_clips[i][:, dframe_to_frame(condition_frame_length) :] | |
video = torch.cat(video_clips, dim=1) | |
current_datetime = datetime.datetime.now() | |
timestamp = current_datetime.timestamp() | |
save_path = os.path.join(args.output, f"output_{timestamp}") | |
saved_path = save_sample(video, save_path=save_path, fps=24) | |
torch.cuda.empty_cache() | |
# add watermark | |
# all watermarked videos should have a _watermarked suffix | |
if mode != "Text2Image" and os.path.exists(WATERMARK_PATH): | |
watermarked_path = saved_path.replace(".mp4", "_watermarked.mp4") | |
success = add_watermark(saved_path, WATERMARK_PATH, watermarked_path) | |
if success: | |
return watermarked_path | |
else: | |
return saved_path | |
else: | |
return saved_path | |
def run_image_inference( | |
prompt_text, | |
resolution, | |
aspect_ratio, | |
length, | |
motion_strength, | |
aesthetic_score, | |
use_motion_strength, | |
use_aesthetic_score, | |
camera_motion, | |
reference_image, | |
refine_prompt, | |
fps, | |
num_loop, | |
seed, | |
sampling_steps, | |
cfg_scale, | |
): | |
return run_inference( | |
"Text2Image", | |
prompt_text, | |
resolution, | |
aspect_ratio, | |
length, | |
motion_strength, | |
aesthetic_score, | |
use_motion_strength, | |
use_aesthetic_score, | |
camera_motion, | |
reference_image, | |
refine_prompt, | |
fps, | |
num_loop, | |
seed, | |
sampling_steps, | |
cfg_scale, | |
) | |
def run_video_inference( | |
prompt_text, | |
resolution, | |
aspect_ratio, | |
length, | |
motion_strength, | |
aesthetic_score, | |
use_motion_strength, | |
use_aesthetic_score, | |
camera_motion, | |
reference_image, | |
refine_prompt, | |
fps, | |
num_loop, | |
seed, | |
sampling_steps, | |
cfg_scale, | |
): | |
# if (resolution == "480p" and length == "16s") or \ | |
# (resolution == "720p" and length in ["8s", "16s"]): | |
# gr.Warning("Generation is interrupted as the combination of 480p and 16s will lead to CUDA out of memory") | |
# else: | |
return run_inference( | |
"Text2Video", | |
prompt_text, | |
resolution, | |
aspect_ratio, | |
length, | |
motion_strength, | |
aesthetic_score, | |
use_motion_strength, | |
use_aesthetic_score, | |
camera_motion, | |
reference_image, | |
refine_prompt, | |
fps, | |
num_loop, | |
seed, | |
sampling_steps, | |
cfg_scale, | |
) | |
def generate_random_prompt(): | |
if "OPENAI_API_KEY" not in os.environ: | |
gr.Warning("Your prompt is empty and the OpenAI API key is not provided, please enter a valid prompt") | |
return None | |
else: | |
prompt_text = get_random_prompt_by_openai() | |
return prompt_text | |
def main(): | |
# create demo | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
""" | |
<div style='text-align: center;'> | |
<p align="center"> | |
<img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/> | |
</p> | |
<div style="display: flex; gap: 10px; justify-content: center;"> | |
<a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a> | |
<a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&"></a> | |
<a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&"></a> | |
<a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&"></a> | |
<a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&"></a> | |
<a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&"></a> | |
<a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a> | |
</div> | |
<h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
prompt_text = gr.Textbox(label="Prompt", placeholder="Describe your video here", lines=4) | |
refine_prompt = gr.Checkbox(value=has_openai_key(), label="Refine prompt with GPT4o", interactive=has_openai_key()) | |
random_prompt_btn = gr.Button("Random Prompt By GPT4o", interactive=has_openai_key()) | |
gr.Markdown("## Basic Settings") | |
resolution = gr.Radio( | |
choices=["144p", "240p", "360p", "480p", "720p"], | |
value="240p", | |
label="Resolution", | |
) | |
aspect_ratio = gr.Radio( | |
choices=["9:16", "16:9", "3:4", "4:3", "1:1"], | |
value="9:16", | |
label="Aspect Ratio (H:W)", | |
) | |
length = gr.Radio( | |
choices=["2s", "4s", "8s", "16s"], | |
value="2s", | |
label="Video Length", | |
info="only effective for video generation, 8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time.", | |
) | |
with gr.Row(): | |
seed = gr.Slider(value=1024, minimum=1, maximum=2048, step=1, label="Seed") | |
sampling_steps = gr.Slider(value=30, minimum=1, maximum=200, step=1, label="Sampling steps") | |
cfg_scale = gr.Slider(value=7.0, minimum=0.0, maximum=10.0, step=0.1, label="CFG Scale") | |
with gr.Row(): | |
with gr.Column(): | |
motion_strength = gr.Slider( | |
value=5, | |
minimum=0, | |
maximum=100, | |
step=1, | |
label="Motion Strength", | |
info="only effective for video generation", | |
) | |
use_motion_strength = gr.Checkbox(value=False, label="Enable") | |
with gr.Column(): | |
aesthetic_score = gr.Slider( | |
value=6.5, | |
minimum=4, | |
maximum=7, | |
step=0.1, | |
label="Aesthetic", | |
info="effective for text & video generation", | |
) | |
use_aesthetic_score = gr.Checkbox(value=True, label="Enable") | |
camera_motion = gr.Radio( | |
value="none", | |
label="Camera Motion", | |
choices=["none", "pan right", "pan left", "tilt up", "tilt down", "zoom in", "zoom out", "static"], | |
interactive=True, | |
) | |
gr.Markdown("## Advanced Settings") | |
with gr.Row(): | |
fps = gr.Slider( | |
value=24, | |
minimum=1, | |
maximum=60, | |
step=1, | |
label="FPS", | |
info="This is the frames per seconds for video generation, keep it to 24 if you are not sure", | |
) | |
num_loop = gr.Slider( | |
value=1, | |
minimum=1, | |
maximum=20, | |
step=1, | |
label="Number of Loops", | |
info="This will change the length of the generated video, keep it to 1 if you are not sure", | |
) | |
gr.Markdown("## Reference Image") | |
reference_image = gr.Image(label="Image (optional)", show_download_button=True) | |
with gr.Column(): | |
output_video = gr.Video(label="Output Video", height="100%") | |
with gr.Row(): | |
image_gen_button = gr.Button("Generate image") | |
video_gen_button = gr.Button("Generate video") | |
image_gen_button.click( | |
fn=run_image_inference, | |
inputs=[ | |
prompt_text, | |
resolution, | |
aspect_ratio, | |
length, | |
motion_strength, | |
aesthetic_score, | |
use_motion_strength, | |
use_aesthetic_score, | |
camera_motion, | |
reference_image, | |
refine_prompt, | |
fps, | |
num_loop, | |
seed, | |
sampling_steps, | |
cfg_scale, | |
], | |
outputs=reference_image, | |
) | |
video_gen_button.click( | |
fn=run_video_inference, | |
inputs=[ | |
prompt_text, | |
resolution, | |
aspect_ratio, | |
length, | |
motion_strength, | |
aesthetic_score, | |
use_motion_strength, | |
use_aesthetic_score, | |
camera_motion, | |
reference_image, | |
refine_prompt, | |
fps, | |
num_loop, | |
seed, | |
sampling_steps, | |
cfg_scale, | |
], | |
outputs=output_video, | |
) | |
random_prompt_btn.click(fn=generate_random_prompt, outputs=prompt_text) | |
# launch | |
demo.launch(server_port=args.port, server_name=args.host, share=args.share) | |
if __name__ == "__main__": | |
main() | |