auto / tools /datasets /convert_dataset.py
kadirnar's picture
Upload 108 files
4af8a26 verified
raw
history blame
1.89 kB
import argparse
import csv
import os
from torchvision.datasets import ImageNet
def get_filelist(file_path):
Filelist = []
for home, dirs, files in os.walk(file_path):
for filename in files:
Filelist.append(os.path.join(home, filename))
return Filelist
def split_by_capital(name):
# BoxingPunchingBag -> Boxing Punching Bag
new_name = ""
for i in range(len(name)):
if name[i].isupper() and i != 0:
new_name += " "
new_name += name[i]
return new_name
def process_imagenet(root, split):
root = os.path.expanduser(root)
data = ImageNet(root, split=split)
samples = [(path, data.classes[label][0]) for path, label in data.samples]
output = f"imagenet_{split}.csv"
with open(output, "w") as f:
writer = csv.writer(f)
writer.writerows(samples)
print(f"Saved {len(samples)} samples to {output}.")
def process_ucf101(root, split):
root = os.path.expanduser(root)
video_lists = get_filelist(os.path.join(root, split))
classes = [x.split("/")[-2] for x in video_lists]
classes = [split_by_capital(x) for x in classes]
samples = list(zip(video_lists, classes))
output = f"ucf101_{split}.csv"
with open(output, "w") as f:
writer = csv.writer(f)
writer.writerows(samples)
print(f"Saved {len(samples)} samples to {output}.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("dataset", type=str, choices=["imagenet", "ucf101"])
parser.add_argument("root", type=str)
parser.add_argument("--split", type=str, default="train")
args = parser.parse_args()
if args.dataset == "imagenet":
process_imagenet(args.root, args.split)
elif args.dataset == "ucf101":
process_ucf101(args.root, args.split)
else:
raise ValueError("Invalid dataset")