kadirnar's picture
Update app.py (#3)
7af5441
raw
history blame
4.81 kB
from transformers import pipeline
from multilingual_translation import text_to_text_generation
from utils import lang_ids
import gradio as gr
biogpt_model_list = [
"microsoft/biogpt",
"microsoft/BioGPT-Large",
"microsoft/BioGPT-Large-PubMedQA"
]
lang_model_list = [
"facebook/m2m100_1.2B",
"facebook/m2m100_418M"
]
whisper_model_list = [
"openai/whisper-small",
"openai/whisper-medium",
"openai/whisper-tiny",
"openai/whisper-large"
]
lang_list = list(lang_ids.keys())
def whisper_demo(input_audio, model_id):
pipe = pipeline(task="automatic-speech-recognition",model=model_id, device='cuda:0')
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language='en', task="transcribe")
output_text = pipe(input_audio)['text']
return output_text
def translate_to_english(prompt, lang_model_id, base_lang):
if base_lang == "English":
return prompt
else:
text_output = text_to_text_generation(
prompt=prompt,
model_id=lang_model_id,
device='cuda:0',
target_lang='en'
)
return text_output[0]
def biogpt_text(
prompt: str,
biogpt_model_id: str,
lang_model_id: str,
base_lang: str,
):
en_prompt = translate_to_english(prompt, lang_model_id, base_lang)
generator = pipeline("text-generation", model=biogpt_model_id, device="cuda:0")
output = generator(en_prompt, max_length=250, num_return_sequences=1, do_sample=True)
output = output[0]['generated_text']
if base_lang == "English":
output_text = output
else:
output_text = text_to_text_generation(
prompt=output,
model_id=lang_model_id,
device='cuda:0',
target_lang=lang_ids[base_lang]
)
return en_prompt, output, output_text
def biogpt_audio(
input_audio: str,
biogpt_model_id: str,
whisper_model_id: str,
max_length: str,
num_return_sequences: int
):
en_prompt = whisper_demo(input_audio=input_audio, model_id=whisper_model_id)
generator = pipeline("text-generation", model=biogpt_model_id, device="cuda:0")
output = generator(en_prompt, max_length=max_length, num_return_sequences=num_return_sequences, do_sample=True)
output_dict = {}
for i in range(num_return_sequences):
output_dict[str(i+1)] = output[i]['generated_text']
output_text = ""
for i in range(num_return_sequences):
output_text += f'{output_dict[str(i+1)]}\n\n'
return en_prompt, output_text, output_text
examples = [
["COVID-19 is", biogpt_model_list[0], lang_model_list[1], "English"]
]
app = gr.Blocks()
with app:
gr.Markdown("# **<p align='center'>Whisper + M2M100 + BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining</p>**")
gr.Markdown(
"""
<p style='text-align: center'>
Follow me for more!
<br> <a href='https://twitter.com/kadirnar_ai' target='_blank'>twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>linkedin</a> |
</p>
"""
)
with gr.Row():
with gr.Column():
with gr.Tab("Text"):
input_text = gr.Textbox(lines=3, value="COVID-19 is", label="Text")
input_text_button = gr.Button(value="Predict")
input_biogpt_model =gr.Dropdown(choices=biogpt_model_list, value=biogpt_model_list[0], label='BioGpt Model')
input_m2m100_model =gr.Dropdown(choices=lang_model_list, value=lang_model_list[1], label='Language Model')
input_base_lang = gr.Dropdown(lang_list, value="English", label="Base Language")
with gr.Tab("Audio"):
input_audio = gr.Microphone(label='Audio')
input_audio_button = gr.Button(value="Predict")
with gr.Column():
prompt_text = gr.Textbox(lines=3, label="Prompt")
output_text = gr.Textbox(lines=3, label="BioGpt Text")
translated_text = gr.Textbox(lines=3,label="Translated Text")
gr.Examples(examples, inputs=[input_text, input_biogpt_model, input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text], fn=biogpt_text, cache_examples=True)
input_text_button.click(biogpt_text, inputs=[input_text, input_biogpt_model, input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text])
input_audio_button.click(biogpt_audio, inputs=[input_audio, input_biogpt_model,input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text])
app.launch()