kadirnar's picture
update
2a37fe9
from pathlib import Path
import cv2
from diffusers.utils import logging
from huggingface_hub import hf_hub_download
from PIL import Image
from torch import nn
try:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
except ImportError as e:
raise ImportError(
"You tried to import realesrgan without having it installed properly. To install Real-ESRGAN, run:\n\n"
"pip install realesrgan"
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class RealESRGANModel(nn.Module):
def __init__(self, model_path, tile=0, tile_pad=10, pre_pad=0, fp32=False):
super().__init__()
try:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
except ImportError as e:
raise ImportError(
"You tried to import realesrgan without having it installed properly. To install Real-ESRGAN, run:\n\n"
"pip install realesrgan"
)
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
self.upsampler = RealESRGANer(
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=tile_pad, pre_pad=pre_pad, half=not fp32
)
def forward(self, image, outscale=4, convert_to_pil=True):
"""Upsample an image array or path.
Args:
image (Union[np.ndarray, str]): Either a np array or an image path. np array is assumed to be in RGB format,
and we convert it to BGR.
outscale (int, optional): Amount to upscale the image. Defaults to 4.
convert_to_pil (bool, optional): If True, return PIL image. Otherwise, return numpy array (BGR). Defaults to True.
Returns:
Union[np.ndarray, PIL.Image.Image]: An upsampled version of the input image.
"""
if isinstance(image, (str, Path)):
img = cv2.imread(image, cv2.IMREAD_UNCHANGED)
else:
img = image
img = (img * 255).round().astype("uint8")
img = img[:, :, ::-1]
image, _ = self.upsampler.enhance(img, outscale=outscale)
if convert_to_pil:
image = Image.fromarray(image[:, :, ::-1])
return image
@classmethod
def from_pretrained(cls, model_name_or_path="nateraw/real-esrgan"):
"""Initialize a pretrained Real-ESRGAN upsampler.
Example:
```python
>>> from stable_diffusion_videos import PipelineRealESRGAN
>>> pipe = PipelineRealESRGAN.from_pretrained('nateraw/real-esrgan')
>>> im_out = pipe('input_img.jpg')
```
Args:
model_name_or_path (str, optional): The Hugging Face repo ID or path to local model. Defaults to 'nateraw/real-esrgan'.
Returns:
stable_diffusion_videos.PipelineRealESRGAN: An instance of `PipelineRealESRGAN` instantiated from pretrained model.
"""
# reuploaded form official ones mentioned here:
# https://github.com/xinntao/Real-ESRGAN
if Path(model_name_or_path).exists():
file = model_name_or_path
else:
file = hf_hub_download(model_name_or_path, "RealESRGAN_x4plus.pth")
return cls(file)
def upsample_imagefolder(self, in_dir, out_dir, suffix="out", outfile_ext=".png", recursive=False, force=False):
in_dir, out_dir = Path(in_dir), Path(out_dir)
if not in_dir.exists():
raise FileNotFoundError(f"Provided input directory {in_dir} does not exist")
out_dir.mkdir(exist_ok=True, parents=True)
generator = in_dir.rglob("*") if recursive else in_dir.glob("*")
image_paths = [x for x in generator if x.suffix.lower() in [".png", ".jpg", ".jpeg"]]
n_img = len(image_paths)
for i, image in enumerate(image_paths):
out_filepath = out_dir / (str(image.relative_to(in_dir).with_suffix("")) + suffix + outfile_ext)
if not force and out_filepath.exists():
logger.info(
f"[{i}/{n_img}] {out_filepath} already exists, skipping. To avoid skipping, pass force=True."
)
continue
logger.info(f"[{i}/{n_img}] upscaling {image}")
im = self(str(image))
out_filepath.parent.mkdir(parents=True, exist_ok=True)
im.save(out_filepath)