Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from video_diffusion.stable_diffusion_video.stable_diffusion_pipeline import StableDiffusionWalkPipeline | |
from video_diffusion.utils.model_list import stable_model_list | |
class StableDiffusionText2VideoGenerator: | |
def __init__(self): | |
self.pipe = None | |
def load_model( | |
self, | |
model_path, | |
): | |
if self.pipe is None: | |
self.pipe = StableDiffusionWalkPipeline.from_pretrained( | |
model_path, | |
torch_dtype=torch.float16, | |
revision="fp16", | |
) | |
self.pipe.to("cuda") | |
self.pipe.enable_xformers_memory_efficient_attention() | |
self.pipe.enable_attention_slicing() | |
return self.pipe | |
def generate_video( | |
self, | |
model_path: str, | |
first_prompts: str, | |
second_prompts: str, | |
negative_prompt: str, | |
num_interpolation_steps: int, | |
guidance_scale: int, | |
num_inference_step: int, | |
height: int, | |
width: int, | |
upsample: bool, | |
fps=int, | |
): | |
first_seed = np.random.randint(0, 100000) | |
second_seed = np.random.randint(0, 100000) | |
seeds = [first_seed, second_seed] | |
prompts = [first_prompts, second_prompts] | |
pipe = self.load_model(model_path=model_path) | |
output_video = pipe.walk( | |
prompts=prompts, | |
num_interpolation_steps=int(num_interpolation_steps), | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_step, | |
negative_prompt=negative_prompt, | |
seeds=seeds, | |
upsample=upsample, | |
fps=fps, | |
) | |
return output_video | |
def app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
stable_text2video_first_prompt = gr.Textbox( | |
lines=1, | |
placeholder="First Prompt", | |
show_label=False, | |
) | |
stable_text2video_second_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Second Prompt", | |
show_label=False, | |
) | |
stable_text2video_negative_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Negative Prompt ", | |
show_label=False, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
stable_text2video_model_path = gr.Dropdown( | |
choices=stable_model_list, | |
label="Stable Model List", | |
value=stable_model_list[0], | |
) | |
stable_text2video_guidance_scale = gr.Slider( | |
minimum=0, | |
maximum=15, | |
step=1, | |
value=8.5, | |
label="Guidance Scale", | |
) | |
stable_text2video_num_inference_steps = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=30, | |
label="Number of Inference Steps", | |
) | |
stable_text2video_fps = gr.Slider( | |
minimum=1, | |
maximum=60, | |
step=1, | |
value=10, | |
label="Fps", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
stable_text2video_num_interpolation_steps = gr.Number( | |
value=10, | |
label="Number of Interpolation Steps", | |
) | |
stable_text2video_height = gr.Slider( | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=512, | |
label="Height", | |
) | |
stable_text2video_width = gr.Slider( | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=512, | |
label="Width", | |
) | |
stable_text2video_upsample = gr.Checkbox( | |
label="Upsample", | |
default=False, | |
) | |
text2video_generate = gr.Button(value="Generator") | |
with gr.Column(): | |
text2video_output = gr.Video(label="Output") | |
text2video_generate.click( | |
fn=StableDiffusionText2VideoGenerator().generate_video, | |
inputs=[ | |
stable_text2video_model_path, | |
stable_text2video_first_prompt, | |
stable_text2video_second_prompt, | |
stable_text2video_negative_prompt, | |
stable_text2video_num_interpolation_steps, | |
stable_text2video_guidance_scale, | |
stable_text2video_num_inference_steps, | |
stable_text2video_height, | |
stable_text2video_width, | |
stable_text2video_upsample, | |
stable_text2video_fps, | |
], | |
outputs=text2video_output, | |
) | |