kadirnar's picture
update
2a37fe9
raw
history blame
5.14 kB
import os
import gradio as gr
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from PIL import Image
from video_diffusion.inpaint_zoom.utils.zoom_out_utils import (
dummy,
preprocess_image,
preprocess_mask_image,
write_video,
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
stable_paint_model_list = ["stabilityai/stable-diffusion-2-inpainting", "runwayml/stable-diffusion-inpainting"]
stable_paint_prompt_list = [
"children running in the forest , sunny, bright, by studio ghibli painting, superior quality, masterpiece, traditional Japanese colors, by Grzegorz Rutkowski, concept art",
"A beautiful landscape of a mountain range with a lake in the foreground",
]
stable_paint_negative_prompt_list = [
"lurry, bad art, blurred, text, watermark",
]
class StableDiffusionZoomOut:
def __init__(self):
self.pipe = None
def load_model(self, model_id):
if self.pipe is None:
self.pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
self.pipe.set_use_memory_efficient_attention_xformers(True)
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe = self.pipe.to("cuda")
self.pipe.safety_checker = dummy
self.g_cuda = torch.Generator(device="cuda")
return self.pipe
def generate_video(
self,
model_id,
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
num_frames,
step_size,
):
pipe = self.load_model(model_id)
new_image = Image.new(mode="RGBA", size=(512, 512))
current_image, mask_image = preprocess_mask_image(new_image)
current_image = pipe(
prompt=[prompt],
negative_prompt=[negative_prompt],
image=current_image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
all_frames = []
all_frames.append(current_image)
for i in range(num_frames):
prev_image = preprocess_image(current_image, step_size, 512)
current_image = prev_image
current_image, mask_image = preprocess_mask_image(current_image)
current_image = pipe(
prompt=[prompt],
negative_prompt=[negative_prompt],
image=current_image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
).images[0]
current_image.paste(prev_image, mask=prev_image)
all_frames.append(current_image)
save_path = "output.mp4"
write_video(save_path, all_frames, fps=30)
return save_path
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
text2image_out_model_path = gr.Dropdown(
choices=stable_paint_model_list, value=stable_paint_model_list[0], label="Text-Image Model Id"
)
text2image_out_prompt = gr.Textbox(lines=2, value=stable_paint_prompt_list[0], label="Prompt")
text2image_out_negative_prompt = gr.Textbox(
lines=1, value=stable_paint_negative_prompt_list[0], label="Negative Prompt"
)
with gr.Row():
with gr.Column():
text2image_out_guidance_scale = gr.Slider(
minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale"
)
text2image_out_num_inference_step = gr.Slider(
minimum=1, maximum=100, step=1, value=50, label="Num Inference Step"
)
with gr.Row():
with gr.Column():
text2image_out_step_size = gr.Slider(
minimum=1, maximum=100, step=1, value=10, label="Step Size"
)
text2image_out_num_frames = gr.Slider(
minimum=1, maximum=100, step=1, value=10, label="Frames"
)
text2image_out_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Video(label="Output")
text2image_out_predict.click(
fn=StableDiffusionZoomOut().generate_video,
inputs=[
text2image_out_model_path,
text2image_out_prompt,
text2image_out_negative_prompt,
text2image_out_guidance_scale,
text2image_out_num_inference_step,
text2image_out_step_size,
text2image_out_num_frames,
],
outputs=output_image,
)