Spaces:
Runtime error
Runtime error
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
from utils import write_video, dummy | |
from PIL import Image | |
import numpy as np | |
import os | |
os.environ["CUDA_VISIBLE_DEVICES"]="0" | |
import torch | |
import gradio as gr | |
orig_prompt = "Create a relaxing atmosphere with the use of plants and other natural elements. Such as a hanging terrarium or a wall-mounted planter. Include plenty of storage options to keep the space organized and clutter-free. Consider adding a vanity with double sinks and plenty of drawers and cabinets. As well as a wall mounted medicine and towel storage." | |
orig_negative_prompt = "lurry, bad art, blurred, text, watermark" | |
def stable_diffusion_zoom_out( | |
repo_id, | |
original_prompt, | |
negative_prompt, | |
steps, | |
num_frames, | |
fps | |
): | |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16") | |
pipe.set_use_memory_efficient_attention_xformers(True) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe = pipe.to("cuda") | |
pipe.safety_checker = dummy | |
current_image = Image.new(mode="RGBA", size=(512,512)) | |
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA") | |
mask_image = Image.fromarray(255-mask_image).convert("RGB") | |
current_image = current_image.convert("RGB") | |
num_images = 1 | |
prompt = [original_prompt] * num_images | |
negative_prompt = [negative_prompt] * num_images | |
images = pipe(prompt=prompt, negative_prompt=negative_prompt, image=current_image, mask_image=mask_image, num_inference_steps=25)[0] | |
current_image = images[0] | |
all_frames = [] | |
all_frames.append(current_image) | |
for i in range(num_frames): | |
next_image = np.array(current_image.convert("RGBA"))*0 | |
prev_image = current_image.resize((512-2*steps,512-2*steps)) | |
prev_image = prev_image.convert("RGBA") | |
prev_image = np.array(prev_image) | |
next_image[:, :, 3] = 1 | |
next_image[steps:512-steps,steps:512-steps,:] = prev_image | |
prev_image = Image.fromarray(next_image) | |
current_image = prev_image | |
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA") | |
mask_image = Image.fromarray(255-mask_image).convert("RGB") | |
current_image = current_image.convert("RGB") | |
images = pipe(prompt=prompt, negative_prompt=negative_prompt, image=current_image, mask_image=mask_image, num_inference_steps=25)[0] | |
current_image = images[0] | |
current_image.paste(prev_image, mask=prev_image) | |
all_frames.append(current_image) | |
save_path = "infinite_zoom_out.mp4" | |
write_video(save_path, all_frames, fps=fps) | |
return save_path | |
inputs = [ | |
gr.inputs.Textbox(lines=1, default="stabilityai/stable-diffusion-2-inpainting", label="Model ID"), | |
gr.inputs.Textbox(lines=5, default=orig_prompt, label="Prompt"), | |
gr.inputs.Textbox(lines=1, default=orig_negative_prompt, label="Negative Prompt"), | |
gr.inputs.Slider(minimum=1, maximum=64, default=32, label="Steps"), | |
gr.inputs.Slider(minimum=1, maximum=500, default=10, step=10, label="Frames"), | |
gr.inputs.Slider(minimum=1, maximum=100, default=16, step=1, label="FPS") | |
] | |
output = gr.outputs.Video() | |
examples = [ | |
["stabilityai/stable-diffusion-2-inpainting", orig_prompt, orig_negative_prompt, 32, 50, 16] | |
] | |
title = "Stable Diffusion Infinite Zoom Out" | |
description = """<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. | |
<br/> | |
<a href="https://huggingface.co/spaces/kadirnar/stable-diffusion-2-infinite-zoom-out?duplicate=true"> | |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
<p/>""" | |
demo_app = gr.Interface( | |
fn=stable_diffusion_zoom_out, | |
description=description, | |
inputs=inputs, | |
outputs=output, | |
title=title, | |
theme='huggingface', | |
examples=examples, | |
cache_examples=True | |
) | |
demo_app.launch(debug=True, enable_queue=True) | |