Spaces:
Runtime error
Runtime error
import argparse | |
import json | |
import os | |
from glob import glob | |
from mmengine.config import Config | |
from torch.utils.tensorboard import SummaryWriter | |
def parse_args(training=False): | |
parser = argparse.ArgumentParser() | |
# model config | |
parser.add_argument("config", help="model config file path") | |
parser.add_argument("--seed", default=42, type=int, help="generation seed") | |
parser.add_argument("--ckpt-path", type=str, help="path to model ckpt; will overwrite cfg.ckpt_path if specified") | |
parser.add_argument("--batch-size", default=None, type=int, help="batch size") | |
# ====================================================== | |
# Inference | |
# ====================================================== | |
if not training: | |
# prompt | |
parser.add_argument("--prompt-path", default=None, type=str, help="path to prompt txt file") | |
parser.add_argument("--save-dir", default=None, type=str, help="path to save generated samples") | |
# hyperparameters | |
parser.add_argument("--num-sampling-steps", default=None, type=int, help="sampling steps") | |
parser.add_argument("--cfg-scale", default=None, type=float, help="balance between cond & uncond") | |
else: | |
parser.add_argument("--wandb", default=None, type=bool, help="enable wandb") | |
parser.add_argument("--load", default=None, type=str, help="path to continue training") | |
parser.add_argument("--data-path", default=None, type=str, help="path to data csv") | |
return parser.parse_args() | |
def merge_args(cfg, args, training=False): | |
if args.ckpt_path is not None: | |
cfg.model["from_pretrained"] = args.ckpt_path | |
args.ckpt_path = None | |
if not training: | |
if args.cfg_scale is not None: | |
cfg.scheduler["cfg_scale"] = args.cfg_scale | |
args.cfg_scale = None | |
if "multi_resolution" not in cfg: | |
cfg["multi_resolution"] = False | |
for k, v in vars(args).items(): | |
if k in cfg and v is not None: | |
cfg[k] = v | |
return cfg | |
def parse_configs(training=False): | |
args = parse_args(training) | |
cfg = Config.fromfile(args.config) | |
cfg = merge_args(cfg, args, training) | |
return cfg | |
def create_experiment_workspace(cfg): | |
""" | |
This function creates a folder for experiment tracking. | |
Args: | |
args: The parsed arguments. | |
Returns: | |
exp_dir: The path to the experiment folder. | |
""" | |
# Make outputs folder (holds all experiment subfolders) | |
os.makedirs(cfg.outputs, exist_ok=True) | |
experiment_index = len(glob(f"{cfg.outputs}/*")) | |
# Create an experiment folder | |
model_name = cfg.model["type"].replace("/", "-") | |
exp_name = f"{experiment_index:03d}-F{cfg.num_frames}S{cfg.frame_interval}-{model_name}" | |
exp_dir = f"{cfg.outputs}/{exp_name}" | |
os.makedirs(exp_dir, exist_ok=True) | |
return exp_name, exp_dir | |
def save_training_config(cfg, experiment_dir): | |
with open(f"{experiment_dir}/config.txt", "w") as f: | |
json.dump(cfg, f, indent=4) | |
def create_tensorboard_writer(exp_dir): | |
tensorboard_dir = f"{exp_dir}/tensorboard" | |
os.makedirs(tensorboard_dir, exist_ok=True) | |
writer = SummaryWriter(tensorboard_dir) | |
return writer | |