Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
from einops import rearrange | |
from timm.models.layers import DropPath | |
from timm.models.vision_transformer import Mlp | |
from opensora.acceleration.checkpoint import auto_grad_checkpoint | |
from opensora.acceleration.communications import gather_forward_split_backward, split_forward_gather_backward | |
from opensora.acceleration.parallel_states import get_sequence_parallel_group | |
from opensora.models.layers.blocks import ( | |
Attention, | |
CaptionEmbedder, | |
MultiHeadCrossAttention, | |
PatchEmbed3D, | |
SeqParallelAttention, | |
SeqParallelMultiHeadCrossAttention, | |
T2IFinalLayer, | |
TimestepEmbedder, | |
approx_gelu, | |
get_1d_sincos_pos_embed, | |
get_2d_sincos_pos_embed, | |
get_layernorm, | |
t2i_modulate, | |
) | |
from opensora.registry import MODELS | |
from opensora.utils.ckpt_utils import load_checkpoint | |
class STDiTBlock(nn.Module): | |
def __init__( | |
self, | |
hidden_size, | |
num_heads, | |
d_s=None, | |
d_t=None, | |
mlp_ratio=4.0, | |
drop_path=0.0, | |
enable_flashattn=False, | |
enable_layernorm_kernel=False, | |
enable_sequence_parallelism=False, | |
): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.enable_flashattn = enable_flashattn | |
self._enable_sequence_parallelism = enable_sequence_parallelism | |
if enable_sequence_parallelism: | |
self.attn_cls = SeqParallelAttention | |
self.mha_cls = SeqParallelMultiHeadCrossAttention | |
else: | |
self.attn_cls = Attention | |
self.mha_cls = MultiHeadCrossAttention | |
self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) | |
self.attn = self.attn_cls( | |
hidden_size, | |
num_heads=num_heads, | |
qkv_bias=True, | |
enable_flashattn=enable_flashattn, | |
) | |
self.cross_attn = self.mha_cls(hidden_size, num_heads) | |
self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) | |
self.mlp = Mlp( | |
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5) | |
# temporal attention | |
self.d_s = d_s | |
self.d_t = d_t | |
if self._enable_sequence_parallelism: | |
sp_size = dist.get_world_size(get_sequence_parallel_group()) | |
# make sure d_t is divisible by sp_size | |
assert d_t % sp_size == 0 | |
self.d_t = d_t // sp_size | |
self.attn_temp = self.attn_cls( | |
hidden_size, | |
num_heads=num_heads, | |
qkv_bias=True, | |
enable_flashattn=self.enable_flashattn, | |
) | |
def forward(self, x, y, t, mask=None, tpe=None): | |
B, N, C = x.shape | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + t.reshape(B, 6, -1) | |
).chunk(6, dim=1) | |
x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa) | |
# spatial branch | |
x_s = rearrange(x_m, "B (T S) C -> (B T) S C", T=self.d_t, S=self.d_s) | |
x_s = self.attn(x_s) | |
x_s = rearrange(x_s, "(B T) S C -> B (T S) C", T=self.d_t, S=self.d_s) | |
x = x + self.drop_path(gate_msa * x_s) | |
# temporal branch | |
x_t = rearrange(x, "B (T S) C -> (B S) T C", T=self.d_t, S=self.d_s) | |
if tpe is not None: | |
x_t = x_t + tpe | |
x_t = self.attn_temp(x_t) | |
x_t = rearrange(x_t, "(B S) T C -> B (T S) C", T=self.d_t, S=self.d_s) | |
x = x + self.drop_path(gate_msa * x_t) | |
# cross attn | |
x = x + self.cross_attn(x, y, mask) | |
# mlp | |
x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) | |
return x | |
class STDiT(nn.Module): | |
def __init__( | |
self, | |
input_size=(1, 32, 32), | |
in_channels=4, | |
patch_size=(1, 2, 2), | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
class_dropout_prob=0.1, | |
pred_sigma=True, | |
drop_path=0.0, | |
no_temporal_pos_emb=False, | |
caption_channels=4096, | |
model_max_length=120, | |
dtype=torch.float32, | |
space_scale=1.0, | |
time_scale=1.0, | |
freeze=None, | |
enable_flashattn=False, | |
enable_layernorm_kernel=False, | |
enable_sequence_parallelism=False, | |
): | |
super().__init__() | |
self.pred_sigma = pred_sigma | |
self.in_channels = in_channels | |
self.out_channels = in_channels * 2 if pred_sigma else in_channels | |
self.hidden_size = hidden_size | |
self.patch_size = patch_size | |
self.input_size = input_size | |
num_patches = np.prod([input_size[i] // patch_size[i] for i in range(3)]) | |
self.num_patches = num_patches | |
self.num_temporal = input_size[0] // patch_size[0] | |
self.num_spatial = num_patches // self.num_temporal | |
self.num_heads = num_heads | |
self.dtype = dtype | |
self.no_temporal_pos_emb = no_temporal_pos_emb | |
self.depth = depth | |
self.mlp_ratio = mlp_ratio | |
self.enable_flashattn = enable_flashattn | |
self.enable_layernorm_kernel = enable_layernorm_kernel | |
self.space_scale = space_scale | |
self.time_scale = time_scale | |
self.register_buffer("pos_embed", self.get_spatial_pos_embed()) | |
self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed()) | |
self.x_embedder = PatchEmbed3D(patch_size, in_channels, hidden_size) | |
self.t_embedder = TimestepEmbedder(hidden_size) | |
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) | |
self.y_embedder = CaptionEmbedder( | |
in_channels=caption_channels, | |
hidden_size=hidden_size, | |
uncond_prob=class_dropout_prob, | |
act_layer=approx_gelu, | |
token_num=model_max_length, | |
) | |
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] | |
self.blocks = nn.ModuleList( | |
[ | |
STDiTBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=self.mlp_ratio, | |
drop_path=drop_path[i], | |
enable_flashattn=self.enable_flashattn, | |
enable_layernorm_kernel=self.enable_layernorm_kernel, | |
enable_sequence_parallelism=enable_sequence_parallelism, | |
d_t=self.num_temporal, | |
d_s=self.num_spatial, | |
) | |
for i in range(self.depth) | |
] | |
) | |
self.final_layer = T2IFinalLayer(hidden_size, np.prod(self.patch_size), self.out_channels) | |
# init model | |
self.initialize_weights() | |
self.initialize_temporal() | |
if freeze is not None: | |
assert freeze in ["not_temporal", "text"] | |
if freeze == "not_temporal": | |
self.freeze_not_temporal() | |
elif freeze == "text": | |
self.freeze_text() | |
# sequence parallel related configs | |
self.enable_sequence_parallelism = enable_sequence_parallelism | |
if enable_sequence_parallelism: | |
self.sp_rank = dist.get_rank(get_sequence_parallel_group()) | |
else: | |
self.sp_rank = None | |
def forward(self, x, timestep, y, mask=None): | |
""" | |
Forward pass of STDiT. | |
Args: | |
x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W] | |
timestep (torch.Tensor): diffusion time steps; of shape [B] | |
y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C] | |
mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token] | |
Returns: | |
x (torch.Tensor): output latent representation; of shape [B, C, T, H, W] | |
""" | |
x = x.to(self.dtype) | |
timestep = timestep.to(self.dtype) | |
y = y.to(self.dtype) | |
# embedding | |
x = self.x_embedder(x) # [B, N, C] | |
x = rearrange(x, "B (T S) C -> B T S C", T=self.num_temporal, S=self.num_spatial) | |
x = x + self.pos_embed | |
x = rearrange(x, "B T S C -> B (T S) C") | |
# shard over the sequence dim if sp is enabled | |
if self.enable_sequence_parallelism: | |
x = split_forward_gather_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="down") | |
t = self.t_embedder(timestep, dtype=x.dtype) # [B, C] | |
t0 = self.t_block(t) # [B, C] | |
y = self.y_embedder(y, self.training) # [B, 1, N_token, C] | |
if mask is not None: | |
if mask.shape[0] != y.shape[0]: | |
mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
mask = mask.squeeze(1).squeeze(1) | |
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
y_lens = mask.sum(dim=1).tolist() | |
else: | |
y_lens = [y.shape[2]] * y.shape[0] | |
y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
# blocks | |
for i, block in enumerate(self.blocks): | |
if i == 0: | |
if self.enable_sequence_parallelism: | |
tpe = torch.chunk( | |
self.pos_embed_temporal, dist.get_world_size(get_sequence_parallel_group()), dim=1 | |
)[self.sp_rank].contiguous() | |
else: | |
tpe = self.pos_embed_temporal | |
else: | |
tpe = None | |
x = auto_grad_checkpoint(block, x, y, t0, y_lens, tpe) | |
if self.enable_sequence_parallelism: | |
x = gather_forward_split_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="up") | |
# x.shape: [B, N, C] | |
# final process | |
x = self.final_layer(x, t) # [B, N, C=T_p * H_p * W_p * C_out] | |
x = self.unpatchify(x) # [B, C_out, T, H, W] | |
# cast to float32 for better accuracy | |
x = x.to(torch.float32) | |
return x | |
def unpatchify(self, x): | |
""" | |
Args: | |
x (torch.Tensor): of shape [B, N, C] | |
Return: | |
x (torch.Tensor): of shape [B, C_out, T, H, W] | |
""" | |
N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)] | |
T_p, H_p, W_p = self.patch_size | |
x = rearrange( | |
x, | |
"B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)", | |
N_t=N_t, | |
N_h=N_h, | |
N_w=N_w, | |
T_p=T_p, | |
H_p=H_p, | |
W_p=W_p, | |
C_out=self.out_channels, | |
) | |
return x | |
def unpatchify_old(self, x): | |
c = self.out_channels | |
t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)] | |
pt, ph, pw = self.patch_size | |
x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c)) | |
x = rearrange(x, "n t h w r p q c -> n c t r h p w q") | |
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) | |
return imgs | |
def get_spatial_pos_embed(self, grid_size=None): | |
if grid_size is None: | |
grid_size = self.input_size[1:] | |
pos_embed = get_2d_sincos_pos_embed( | |
self.hidden_size, | |
(grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]), | |
scale=self.space_scale, | |
) | |
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) | |
return pos_embed | |
def get_temporal_pos_embed(self): | |
pos_embed = get_1d_sincos_pos_embed( | |
self.hidden_size, | |
self.input_size[0] // self.patch_size[0], | |
scale=self.time_scale, | |
) | |
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) | |
return pos_embed | |
def freeze_not_temporal(self): | |
for n, p in self.named_parameters(): | |
if "attn_temp" not in n: | |
p.requires_grad = False | |
def freeze_text(self): | |
for n, p in self.named_parameters(): | |
if "cross_attn" in n: | |
p.requires_grad = False | |
def initialize_temporal(self): | |
for block in self.blocks: | |
nn.init.constant_(block.attn_temp.proj.weight, 0) | |
nn.init.constant_(block.attn_temp.proj.bias, 0) | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
w = self.x_embedder.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
nn.init.normal_(self.t_block[1].weight, std=0.02) | |
# Initialize caption embedding MLP: | |
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) | |
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) | |
# Zero-out adaLN modulation layers in PixArt blocks: | |
for block in self.blocks: | |
nn.init.constant_(block.cross_attn.proj.weight, 0) | |
nn.init.constant_(block.cross_attn.proj.bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.final_layer.linear.weight, 0) | |
nn.init.constant_(self.final_layer.linear.bias, 0) | |
def STDiT_XL_2(from_pretrained=None, **kwargs): | |
model = STDiT(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs) | |
if from_pretrained is not None: | |
load_checkpoint(model, from_pretrained) | |
return model | |