Spaces:
Runtime error
Runtime error
# Modified from Meta DiT | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# DiT: https://github.com/facebookresearch/DiT/tree/main | |
# GLIDE: https://github.com/openai/glide-text2im | |
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py | |
# -------------------------------------------------------- | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from einops import rearrange | |
from timm.models.vision_transformer import Mlp | |
from opensora.acceleration.checkpoint import auto_grad_checkpoint | |
from opensora.models.layers.blocks import ( | |
Attention, | |
CaptionEmbedder, | |
FinalLayer, | |
LabelEmbedder, | |
PatchEmbed3D, | |
TimestepEmbedder, | |
approx_gelu, | |
get_1d_sincos_pos_embed, | |
get_2d_sincos_pos_embed, | |
get_layernorm, | |
modulate, | |
) | |
from opensora.registry import MODELS | |
from opensora.utils.ckpt_utils import load_checkpoint | |
class DiTBlock(nn.Module): | |
""" | |
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. | |
""" | |
def __init__( | |
self, | |
hidden_size, | |
num_heads, | |
mlp_ratio=4.0, | |
enable_flashattn=False, | |
enable_layernorm_kernel=False, | |
): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.num_heads = num_heads | |
self.enable_flashattn = enable_flashattn | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) | |
self.attn = Attention( | |
hidden_size, | |
num_heads=num_heads, | |
qkv_bias=True, | |
enable_flashattn=enable_flashattn, | |
) | |
self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) | |
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) | |
def forward(self, x, c): | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) | |
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1, x, shift_msa, scale_msa)) | |
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2, x, shift_mlp, scale_mlp)) | |
return x | |
class DiT(nn.Module): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
input_size=(16, 32, 32), | |
in_channels=4, | |
patch_size=(1, 2, 2), | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
class_dropout_prob=0.1, | |
learn_sigma=True, | |
condition="text", | |
no_temporal_pos_emb=False, | |
caption_channels=512, | |
model_max_length=77, | |
dtype=torch.float32, | |
enable_flashattn=False, | |
enable_layernorm_kernel=False, | |
): | |
super().__init__() | |
self.learn_sigma = learn_sigma | |
self.in_channels = in_channels | |
self.out_channels = in_channels * 2 if learn_sigma else in_channels | |
self.hidden_size = hidden_size | |
self.patch_size = patch_size | |
self.input_size = input_size | |
num_patches = np.prod([input_size[i] // patch_size[i] for i in range(3)]) | |
self.num_patches = num_patches | |
self.num_temporal = input_size[0] // patch_size[0] | |
self.num_spatial = num_patches // self.num_temporal | |
self.num_heads = num_heads | |
self.dtype = dtype | |
self.use_text_encoder = not condition.startswith("label") | |
if enable_flashattn: | |
assert dtype in [ | |
torch.float16, | |
torch.bfloat16, | |
], f"Flash attention only supports float16 and bfloat16, but got {self.dtype}" | |
self.no_temporal_pos_emb = no_temporal_pos_emb | |
self.mlp_ratio = mlp_ratio | |
self.depth = depth | |
self.register_buffer("pos_embed_spatial", self.get_spatial_pos_embed()) | |
self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed()) | |
self.x_embedder = PatchEmbed3D(patch_size, in_channels, embed_dim=hidden_size) | |
if not self.use_text_encoder: | |
num_classes = int(condition.split("_")[-1]) | |
self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob) | |
else: | |
self.y_embedder = CaptionEmbedder( | |
in_channels=caption_channels, | |
hidden_size=hidden_size, | |
uncond_prob=class_dropout_prob, | |
act_layer=approx_gelu, | |
token_num=1, # pooled token | |
) | |
self.t_embedder = TimestepEmbedder(hidden_size) | |
self.blocks = nn.ModuleList( | |
[ | |
DiTBlock( | |
hidden_size, | |
num_heads, | |
mlp_ratio=mlp_ratio, | |
enable_flashattn=enable_flashattn, | |
enable_layernorm_kernel=enable_layernorm_kernel, | |
) | |
for _ in range(depth) | |
] | |
) | |
self.final_layer = FinalLayer(hidden_size, np.prod(self.patch_size), self.out_channels) | |
self.initialize_weights() | |
self.enable_flashattn = enable_flashattn | |
self.enable_layernorm_kernel = enable_layernorm_kernel | |
def get_spatial_pos_embed(self): | |
pos_embed = get_2d_sincos_pos_embed( | |
self.hidden_size, | |
self.input_size[1] // self.patch_size[1], | |
) | |
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) | |
return pos_embed | |
def get_temporal_pos_embed(self): | |
pos_embed = get_1d_sincos_pos_embed( | |
self.hidden_size, | |
self.input_size[0] // self.patch_size[0], | |
) | |
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) | |
return pos_embed | |
def unpatchify(self, x): | |
c = self.out_channels | |
t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)] | |
pt, ph, pw = self.patch_size | |
x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c)) | |
x = rearrange(x, "n t h w r p q c -> n c t r h p w q") | |
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) | |
return imgs | |
def forward(self, x, t, y): | |
""" | |
Forward pass of DiT. | |
x: (B, C, T, H, W) tensor of inputs | |
t: (B,) tensor of diffusion timesteps | |
y: list of text | |
""" | |
# origin inputs should be float32, cast to specified dtype | |
x = x.to(self.dtype) | |
# embedding | |
x = self.x_embedder(x) # (B, N, D) | |
x = rearrange(x, "b (t s) d -> b t s d", t=self.num_temporal, s=self.num_spatial) | |
x = x + self.pos_embed_spatial | |
if not self.no_temporal_pos_emb: | |
x = rearrange(x, "b t s d -> b s t d") | |
x = x + self.pos_embed_temporal | |
x = rearrange(x, "b s t d -> b (t s) d") | |
else: | |
x = rearrange(x, "b t s d -> b (t s) d") | |
t = self.t_embedder(t, dtype=x.dtype) # (N, D) | |
y = self.y_embedder(y, self.training) # (N, D) | |
if self.use_text_encoder: | |
y = y.squeeze(1).squeeze(1) | |
condition = t + y | |
# blocks | |
for _, block in enumerate(self.blocks): | |
c = condition | |
x = auto_grad_checkpoint(block, x, c) # (B, N, D) | |
# final process | |
x = self.final_layer(x, condition) # (B, N, num_patches * out_channels) | |
x = self.unpatchify(x) # (B, out_channels, T, H, W) | |
# cast to float32 for better accuracy | |
x = x.to(torch.float32) | |
return x | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
if module.weight.requires_grad_: | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
w = self.x_embedder.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
nn.init.constant_(self.x_embedder.proj.bias, 0) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers in DiT blocks: | |
for block in self.blocks: | |
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(self.final_layer.linear.weight, 0) | |
nn.init.constant_(self.final_layer.linear.bias, 0) | |
# Zero-out text embedding layers: | |
if self.use_text_encoder: | |
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) | |
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) | |
def DiT_XL_2(from_pretrained=None, **kwargs): | |
model = DiT( | |
depth=28, | |
hidden_size=1152, | |
patch_size=(1, 2, 2), | |
num_heads=16, | |
**kwargs, | |
) | |
if from_pretrained is not None: | |
load_checkpoint(model, from_pretrained) | |
return model | |
def DiT_XL_2x2(from_pretrained=None, **kwargs): | |
model = DiT( | |
depth=28, | |
hidden_size=1152, | |
patch_size=(2, 2, 2), | |
num_heads=16, | |
**kwargs, | |
) | |
if from_pretrained is not None: | |
load_checkpoint(model, from_pretrained) | |
return model | |