Spaces:
Runtime error
Runtime error
import argparse | |
import csv | |
import os | |
import warnings | |
import torch | |
from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, IMAGE_TOKEN_INDEX | |
from llava.conversation import conv_templates | |
from llava.mm_utils import get_anyres_image_grid_shape, get_model_name_from_path, process_images, tokenizer_image_token | |
from llava.model.builder import load_pretrained_model | |
from llava.model.llava_arch import unpad_image | |
from llava.utils import disable_torch_init | |
from tqdm import tqdm | |
from .utils import extract_frames, prompts, read_video_list | |
disable_torch_init() | |
def prepare_inputs_labels_for_multimodal( | |
self, input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes=None | |
): | |
# llava_arch.py | |
vision_tower = self.get_vision_tower() | |
if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
return input_ids, position_ids, attention_mask, past_key_values, None, labels | |
if type(images) is list or images.ndim == 5: | |
if type(images) is list: | |
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images] | |
concat_images = torch.cat([image for image in images], dim=0) | |
image_features = self.encode_images(concat_images) | |
split_sizes = [image.shape[0] for image in images] | |
image_features = torch.split(image_features, split_sizes, dim=0) | |
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat") | |
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square") | |
if mm_patch_merge_type == "flat": | |
image_features = [x.flatten(0, 1) for x in image_features] | |
elif mm_patch_merge_type.startswith("spatial"): | |
new_image_features = [] | |
for image_idx, image_feature in enumerate(image_features): | |
if image_feature.shape[0] > 1: | |
base_image_feature = image_feature[0] | |
image_feature = image_feature[1:] | |
height = width = self.get_vision_tower().num_patches_per_side | |
assert height * width == base_image_feature.shape[0] | |
if image_aspect_ratio == "anyres": | |
num_patch_width, num_patch_height = get_anyres_image_grid_shape( | |
image_sizes[image_idx], | |
self.config.image_grid_pinpoints, | |
self.get_vision_tower().config.image_size, | |
) | |
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) | |
else: | |
raise NotImplementedError | |
if "unpad" in mm_patch_merge_type: | |
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() | |
image_feature = image_feature.flatten(1, 2).flatten(2, 3) | |
image_feature = unpad_image(image_feature, image_sizes[image_idx]) | |
image_feature = torch.cat( | |
( | |
image_feature, | |
self.model.image_newline[:, None, None] | |
.expand(*image_feature.shape[:-1], 1) | |
.to(image_feature.device), | |
), | |
dim=-1, | |
) | |
image_feature = image_feature.flatten(1, 2).transpose(0, 1) | |
else: | |
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() | |
image_feature = image_feature.flatten(0, 3) | |
image_feature = torch.cat((base_image_feature, image_feature), dim=0) | |
else: | |
image_feature = image_feature[0] | |
if "unpad" in mm_patch_merge_type: | |
image_feature = torch.cat( | |
(image_feature, self.model.image_newline[None].to(image_feature.device)), dim=0 | |
) | |
new_image_features.append(image_feature) | |
image_features = new_image_features | |
else: | |
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}") | |
else: | |
image_features = self.encode_images(images) | |
# TODO: image start / end is not implemented here to support pretraining. | |
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False): | |
raise NotImplementedError | |
# Let's just add dummy tensors if they do not exist, | |
# it is a headache to deal with None all the time. | |
# But it is not ideal, and if you have a better idea, | |
# please open an issue / submit a PR, thanks. | |
_labels = labels | |
_position_ids = position_ids | |
_attention_mask = attention_mask | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) | |
else: | |
attention_mask = attention_mask.bool() | |
if position_ids is None: | |
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) | |
if labels is None: | |
labels = torch.full_like(input_ids, IGNORE_INDEX) | |
# remove the padding using attention_mask -- FIXME | |
input_ids = [ | |
cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask) | |
] | |
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] | |
new_input_embeds = [] | |
new_labels = [] | |
cur_image_idx = 0 | |
for batch_idx, cur_input_ids in enumerate(input_ids): | |
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() | |
if num_images == 0: | |
cur_image_features = image_features[cur_image_idx] | |
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) | |
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) | |
new_input_embeds.append(cur_input_embeds) | |
new_labels.append(labels[batch_idx]) | |
cur_image_idx += 1 | |
continue | |
image_token_indices = ( | |
[-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] | |
) | |
cur_input_ids_noim = [] | |
cur_labels = labels[batch_idx] | |
cur_labels_noim = [] | |
for i in range(len(image_token_indices) - 1): | |
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]]) | |
cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]) | |
split_sizes = [x.shape[0] for x in cur_labels_noim] | |
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) | |
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) | |
cur_new_input_embeds = [] | |
cur_new_labels = [] | |
for i in range(num_images + 1): | |
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) | |
cur_new_labels.append(cur_labels_noim[i]) | |
if i < num_images: | |
cur_image_features = image_features[cur_image_idx] | |
cur_image_idx += 1 | |
cur_new_input_embeds.append(cur_image_features) | |
cur_new_labels.append( | |
torch.full( | |
(cur_image_features.shape[0],), | |
IGNORE_INDEX, | |
device=cur_labels.device, | |
dtype=cur_labels.dtype, | |
) | |
) | |
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] | |
cur_new_input_embeds = torch.cat(cur_new_input_embeds) | |
cur_new_labels = torch.cat(cur_new_labels) | |
new_input_embeds.append(cur_new_input_embeds) | |
new_labels.append(cur_new_labels) | |
# Truncate sequences to max length as image embeddings can make the sequence longer | |
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None) | |
if tokenizer_model_max_length is not None: | |
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] | |
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] | |
# Combine them | |
max_len = max(x.shape[0] for x in new_input_embeds) | |
batch_size = len(new_input_embeds) | |
new_input_embeds_padded = [] | |
new_labels_padded = torch.full( | |
(batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device | |
) | |
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) | |
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) | |
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): | |
cur_len = cur_new_embed.shape[0] | |
if getattr(self.config, "tokenizer_padding_side", "right") == "left": | |
new_input_embeds_padded.append( | |
torch.cat( | |
( | |
torch.zeros( | |
(max_len - cur_len, cur_new_embed.shape[1]), | |
dtype=cur_new_embed.dtype, | |
device=cur_new_embed.device, | |
), | |
cur_new_embed, | |
), | |
dim=0, | |
) | |
) | |
if cur_len > 0: | |
new_labels_padded[i, -cur_len:] = cur_new_labels | |
attention_mask[i, -cur_len:] = True | |
position_ids[i, -cur_len:] = torch.arange( | |
0, cur_len, dtype=position_ids.dtype, device=position_ids.device | |
) | |
else: | |
new_input_embeds_padded.append( | |
torch.cat( | |
( | |
cur_new_embed, | |
torch.zeros( | |
(max_len - cur_len, cur_new_embed.shape[1]), | |
dtype=cur_new_embed.dtype, | |
device=cur_new_embed.device, | |
), | |
), | |
dim=0, | |
) | |
) | |
if cur_len > 0: | |
new_labels_padded[i, :cur_len] = cur_new_labels | |
attention_mask[i, :cur_len] = True | |
position_ids[i, :cur_len] = torch.arange( | |
0, cur_len, dtype=position_ids.dtype, device=position_ids.device | |
) | |
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) | |
if _labels is None: | |
new_labels = None | |
else: | |
new_labels = new_labels_padded | |
if _attention_mask is None: | |
attention_mask = None | |
else: | |
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) | |
if _position_ids is None: | |
position_ids = None | |
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels | |
def main(args): | |
# ====================================================== | |
# 1. read video list | |
# ====================================================== | |
videos = read_video_list(args.video_folder, args.output_file) | |
f = open(args.output_file, "a") | |
writer = csv.writer(f) | |
# ====================================================== | |
# 2. load model and prepare prompts | |
# ====================================================== | |
model_path = "liuhaotian/llava-v1.6-34b" | |
query = prompts[args.prompt] | |
print(f"Prompt: {query}") | |
conv = conv_templates["chatml_direct"].copy() | |
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\n" + query) | |
prompt = conv.get_prompt() | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") # Pytorch non-meta copying warning fills out the console | |
tokenizer, model, image_processor, context_len = load_pretrained_model( | |
model_path=model_path, | |
model_base=None, | |
model_name=get_model_name_from_path(model_path), | |
) | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
input_ids = input_ids.unsqueeze(0).to(model.device) | |
# ====================================================== | |
# 3. generate captions | |
# ====================================================== | |
bs = args.bs | |
for i in tqdm(range(0, len(videos), bs)): | |
# prepare a batch of inputs | |
video_files = videos[i : i + bs] | |
frames = [] | |
video_lengths = [] | |
for video_file in video_files: | |
frame, length = extract_frames(os.path.join(args.video_folder, video_file)) | |
if len(frame) < 3: | |
continue | |
frames.append(frame) | |
video_lengths.append(length) | |
if len(frames) == 0: | |
continue | |
# encode the batch of inputs | |
samples = [] | |
for imgs in frames: | |
imgs_size = [img.size for img in imgs] | |
imgs = process_images(imgs, image_processor, model.config) | |
imgs = imgs.to(model.device, dtype=torch.float16) | |
with torch.inference_mode(): | |
_, _, _, _, inputs_embeds, _ = prepare_inputs_labels_for_multimodal( | |
model, input_ids, None, None, None, None, images=imgs, image_sizes=imgs_size | |
) | |
samples.append(inputs_embeds) | |
# padding | |
max_len = max([sample.shape[1] for sample in samples]) | |
attention_mask = torch.tensor( | |
[[0] * (max_len - samples[i].shape[1]) + [1] * samples[i].shape[1] for i in range(len(samples))] | |
).to(model.device) | |
inputs_embeds = [ | |
torch.cat( | |
[ | |
torch.zeros( | |
(1, max_len - samples[i].shape[1], samples[i].shape[-1]), | |
device=model.device, | |
dtype=torch.float16, | |
), | |
samples[i], | |
], | |
dim=1, | |
) | |
for i in range(len(samples)) | |
] | |
inputs_embeds = torch.cat(inputs_embeds, dim=0) | |
# generate outputs | |
output_ids = super(type(model), model).generate( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
do_sample=True, | |
temperature=0.2, | |
max_new_tokens=512, | |
use_cache=True, | |
) | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
outputs = [output.replace("\n", " ").strip() for output in outputs] | |
# save results | |
result = list(zip(video_files, outputs, video_lengths)) | |
for t in result: | |
writer.writerow(t) | |
f.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("video_folder", type=str) | |
parser.add_argument("output_file", type=str) | |
parser.add_argument("--bs", type=int, default=32) | |
parser.add_argument("--prompt", type=str, default="three_frames") | |
args = parser.parse_args() | |
main(args) | |