|
|
|
|
|
|
|
""" |
|
@Author : Peike Li |
|
@Contact : peike.li@yahoo.com |
|
@File : soft_dice_loss.py |
|
@Time : 8/13/19 5:09 PM |
|
@Desc : |
|
@License : This source code is licensed under the license found in the |
|
LICENSE file in the root directory of this source tree. |
|
""" |
|
|
|
from __future__ import print_function, division |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
try: |
|
from itertools import ifilterfalse |
|
except ImportError: |
|
from itertools import filterfalse as ifilterfalse |
|
|
|
|
|
def tversky_loss(probas, labels, alpha=0.5, beta=0.5, epsilon=1e-6): |
|
''' |
|
Tversky loss function. |
|
probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1) |
|
labels: [P] Tensor, ground truth labels (between 0 and C - 1) |
|
|
|
Same as soft dice loss when alpha=beta=0.5. |
|
Same as Jaccord loss when alpha=beta=1.0. |
|
See `Tversky loss function for image segmentation using 3D fully convolutional deep networks` |
|
https://arxiv.org/pdf/1706.05721.pdf |
|
''' |
|
C = probas.size(1) |
|
losses = [] |
|
for c in list(range(C)): |
|
fg = (labels == c).float() |
|
if fg.sum() == 0: |
|
continue |
|
class_pred = probas[:, c] |
|
p0 = class_pred |
|
p1 = 1 - class_pred |
|
g0 = fg |
|
g1 = 1 - fg |
|
numerator = torch.sum(p0 * g0) |
|
denominator = numerator + alpha * torch.sum(p0 * g1) + beta * torch.sum(p1 * g0) |
|
losses.append(1 - ((numerator) / (denominator + epsilon))) |
|
return mean(losses) |
|
|
|
|
|
def flatten_probas(probas, labels, ignore=255): |
|
""" |
|
Flattens predictions in the batch |
|
""" |
|
B, C, H, W = probas.size() |
|
probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) |
|
labels = labels.view(-1) |
|
if ignore is None: |
|
return probas, labels |
|
valid = (labels != ignore) |
|
vprobas = probas[valid.nonzero().squeeze()] |
|
vlabels = labels[valid] |
|
return vprobas, vlabels |
|
|
|
|
|
def isnan(x): |
|
return x != x |
|
|
|
|
|
def mean(l, ignore_nan=False, empty=0): |
|
""" |
|
nanmean compatible with generators. |
|
""" |
|
l = iter(l) |
|
if ignore_nan: |
|
l = ifilterfalse(isnan, l) |
|
try: |
|
n = 1 |
|
acc = next(l) |
|
except StopIteration: |
|
if empty == 'raise': |
|
raise ValueError('Empty mean') |
|
return empty |
|
for n, v in enumerate(l, 2): |
|
acc += v |
|
if n == 1: |
|
return acc |
|
return acc / n |
|
|
|
|
|
class SoftDiceLoss(nn.Module): |
|
def __init__(self, ignore_index=255): |
|
super(SoftDiceLoss, self).__init__() |
|
self.ignore_index = ignore_index |
|
|
|
def forward(self, pred, label): |
|
pred = F.softmax(pred, dim=1) |
|
return tversky_loss(*flatten_probas(pred, label, ignore=self.ignore_index), alpha=0.5, beta=0.5) |
|
|
|
|
|
class SoftJaccordLoss(nn.Module): |
|
def __init__(self, ignore_index=255): |
|
super(SoftJaccordLoss, self).__init__() |
|
self.ignore_index = ignore_index |
|
|
|
def forward(self, pred, label): |
|
pred = F.softmax(pred, dim=1) |
|
return tversky_loss(*flatten_probas(pred, label, ignore=self.ignore_index), alpha=1.0, beta=1.0) |
|
|