|
|
|
|
|
import argparse |
|
import os |
|
from itertools import chain |
|
import cv2 |
|
import tqdm |
|
|
|
from detectron2.config import get_cfg |
|
from detectron2.data import DatasetCatalog, MetadataCatalog, build_detection_train_loader |
|
from detectron2.data import detection_utils as utils |
|
from detectron2.data.build import filter_images_with_few_keypoints |
|
from detectron2.utils.logger import setup_logger |
|
from detectron2.utils.visualizer import Visualizer |
|
|
|
|
|
def setup(args): |
|
cfg = get_cfg() |
|
if args.config_file: |
|
cfg.merge_from_file(args.config_file) |
|
cfg.merge_from_list(args.opts) |
|
cfg.freeze() |
|
return cfg |
|
|
|
|
|
def parse_args(in_args=None): |
|
parser = argparse.ArgumentParser(description="Visualize ground-truth data") |
|
parser.add_argument( |
|
"--source", |
|
choices=["annotation", "dataloader"], |
|
required=True, |
|
help="visualize the annotations or the data loader (with pre-processing)", |
|
) |
|
parser.add_argument("--config-file", metavar="FILE", help="path to config file") |
|
parser.add_argument("--output-dir", default="./", help="path to output directory") |
|
parser.add_argument("--show", action="store_true", help="show output in a window") |
|
parser.add_argument( |
|
"opts", |
|
help="Modify config options using the command-line", |
|
default=None, |
|
nargs=argparse.REMAINDER, |
|
) |
|
return parser.parse_args(in_args) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
logger = setup_logger() |
|
logger.info("Arguments: " + str(args)) |
|
cfg = setup(args) |
|
|
|
dirname = args.output_dir |
|
os.makedirs(dirname, exist_ok=True) |
|
metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0]) |
|
|
|
def output(vis, fname): |
|
if args.show: |
|
print(fname) |
|
cv2.imshow("window", vis.get_image()[:, :, ::-1]) |
|
cv2.waitKey() |
|
else: |
|
filepath = os.path.join(dirname, fname) |
|
print("Saving to {} ...".format(filepath)) |
|
vis.save(filepath) |
|
|
|
scale = 2.0 if args.show else 1.0 |
|
if args.source == "dataloader": |
|
train_data_loader = build_detection_train_loader(cfg) |
|
for batch in train_data_loader: |
|
for per_image in batch: |
|
|
|
img = per_image["image"].permute(1, 2, 0).cpu().detach().numpy() |
|
img = utils.convert_image_to_rgb(img, cfg.INPUT.FORMAT) |
|
|
|
visualizer = Visualizer(img, metadata=metadata, scale=scale) |
|
target_fields = per_image["instances"].get_fields() |
|
labels = [metadata.thing_classes[i] for i in target_fields["gt_classes"]] |
|
vis = visualizer.overlay_instances( |
|
labels=labels, |
|
boxes=target_fields.get("gt_boxes", None), |
|
masks=target_fields.get("gt_masks", None), |
|
keypoints=target_fields.get("gt_keypoints", None), |
|
) |
|
output(vis, str(per_image["image_id"]) + ".jpg") |
|
else: |
|
dicts = list(chain.from_iterable([DatasetCatalog.get(k) for k in cfg.DATASETS.TRAIN])) |
|
if cfg.MODEL.KEYPOINT_ON: |
|
dicts = filter_images_with_few_keypoints(dicts, 1) |
|
for dic in tqdm.tqdm(dicts): |
|
img = utils.read_image(dic["file_name"], "RGB") |
|
visualizer = Visualizer(img, metadata=metadata, scale=scale) |
|
vis = visualizer.draw_dataset_dict(dic) |
|
output(vis, os.path.basename(dic["file_name"])) |
|
|