|
|
|
import json |
|
import numpy as np |
|
from functools import lru_cache |
|
from typing import Dict, List, Optional, Tuple |
|
import cv2 |
|
import torch |
|
|
|
from detectron2.utils.file_io import PathManager |
|
|
|
from densepose.modeling import build_densepose_embedder |
|
from densepose.modeling.cse.utils import get_closest_vertices_mask_from_ES |
|
|
|
from ..data.utils import get_class_to_mesh_name_mapping |
|
from ..structures import DensePoseEmbeddingPredictorOutput |
|
from ..structures.mesh import create_mesh |
|
from .base import Boxes, Image, MatrixVisualizer |
|
from .densepose_results_textures import get_texture_atlas |
|
|
|
|
|
@lru_cache() |
|
def get_xyz_vertex_embedding(mesh_name: str, device: torch.device): |
|
if mesh_name == "smpl_27554": |
|
embed_path = PathManager.get_local_path( |
|
"https://dl.fbaipublicfiles.com/densepose/data/cse/mds_d=256.npy" |
|
) |
|
embed_map, _ = np.load(embed_path, allow_pickle=True) |
|
embed_map = torch.tensor(embed_map).float()[:, 0] |
|
embed_map -= embed_map.min() |
|
embed_map /= embed_map.max() |
|
else: |
|
mesh = create_mesh(mesh_name, device) |
|
embed_map = mesh.vertices.sum(dim=1) |
|
embed_map -= embed_map.min() |
|
embed_map /= embed_map.max() |
|
embed_map = embed_map**2 |
|
return embed_map |
|
|
|
|
|
class DensePoseOutputsVertexVisualizer: |
|
def __init__( |
|
self, |
|
cfg, |
|
inplace=True, |
|
cmap=cv2.COLORMAP_JET, |
|
alpha=0.7, |
|
device="cuda", |
|
default_class=0, |
|
**kwargs, |
|
): |
|
self.mask_visualizer = MatrixVisualizer( |
|
inplace=inplace, cmap=cmap, val_scale=1.0, alpha=alpha |
|
) |
|
self.class_to_mesh_name = get_class_to_mesh_name_mapping(cfg) |
|
self.embedder = build_densepose_embedder(cfg) |
|
self.device = torch.device(device) |
|
self.default_class = default_class |
|
|
|
self.mesh_vertex_embeddings = { |
|
mesh_name: self.embedder(mesh_name).to(self.device) |
|
for mesh_name in self.class_to_mesh_name.values() |
|
if self.embedder.has_embeddings(mesh_name) |
|
} |
|
|
|
def visualize( |
|
self, |
|
image_bgr: Image, |
|
outputs_boxes_xywh_classes: Tuple[ |
|
Optional[DensePoseEmbeddingPredictorOutput], Optional[Boxes], Optional[List[int]] |
|
], |
|
) -> Image: |
|
if outputs_boxes_xywh_classes[0] is None: |
|
return image_bgr |
|
|
|
S, E, N, bboxes_xywh, pred_classes = self.extract_and_check_outputs_and_boxes( |
|
outputs_boxes_xywh_classes |
|
) |
|
|
|
for n in range(N): |
|
x, y, w, h = bboxes_xywh[n].int().tolist() |
|
mesh_name = self.class_to_mesh_name[pred_classes[n]] |
|
closest_vertices, mask = get_closest_vertices_mask_from_ES( |
|
E[[n]], |
|
S[[n]], |
|
h, |
|
w, |
|
self.mesh_vertex_embeddings[mesh_name], |
|
self.device, |
|
) |
|
embed_map = get_xyz_vertex_embedding(mesh_name, self.device) |
|
vis = (embed_map[closest_vertices].clip(0, 1) * 255.0).cpu().numpy() |
|
mask_numpy = mask.cpu().numpy().astype(dtype=np.uint8) |
|
image_bgr = self.mask_visualizer.visualize(image_bgr, mask_numpy, vis, [x, y, w, h]) |
|
|
|
return image_bgr |
|
|
|
def extract_and_check_outputs_and_boxes(self, outputs_boxes_xywh_classes): |
|
|
|
densepose_output, bboxes_xywh, pred_classes = outputs_boxes_xywh_classes |
|
|
|
if pred_classes is None: |
|
pred_classes = [self.default_class] * len(bboxes_xywh) |
|
|
|
assert isinstance( |
|
densepose_output, DensePoseEmbeddingPredictorOutput |
|
), "DensePoseEmbeddingPredictorOutput expected, {} encountered".format( |
|
type(densepose_output) |
|
) |
|
|
|
S = densepose_output.coarse_segm |
|
E = densepose_output.embedding |
|
N = S.size(0) |
|
assert N == E.size( |
|
0 |
|
), "CSE coarse_segm {} and embeddings {}" " should have equal first dim size".format( |
|
S.size(), E.size() |
|
) |
|
assert N == len( |
|
bboxes_xywh |
|
), "number of bounding boxes {}" " should be equal to first dim size of outputs {}".format( |
|
len(bboxes_xywh), N |
|
) |
|
assert N == len(pred_classes), ( |
|
"number of predicted classes {}" |
|
" should be equal to first dim size of outputs {}".format(len(bboxes_xywh), N) |
|
) |
|
|
|
return S, E, N, bboxes_xywh, pred_classes |
|
|
|
|
|
def get_texture_atlases(json_str: Optional[str]) -> Optional[Dict[str, Optional[np.ndarray]]]: |
|
""" |
|
json_str is a JSON string representing a mesh_name -> texture_atlas_path dictionary |
|
""" |
|
if json_str is None: |
|
return None |
|
|
|
paths = json.loads(json_str) |
|
return {mesh_name: get_texture_atlas(path) for mesh_name, path in paths.items()} |
|
|
|
|
|
class DensePoseOutputsTextureVisualizer(DensePoseOutputsVertexVisualizer): |
|
def __init__( |
|
self, |
|
cfg, |
|
texture_atlases_dict, |
|
device="cuda", |
|
default_class=0, |
|
**kwargs, |
|
): |
|
self.embedder = build_densepose_embedder(cfg) |
|
|
|
self.texture_image_dict = {} |
|
self.alpha_dict = {} |
|
|
|
for mesh_name in texture_atlases_dict.keys(): |
|
if texture_atlases_dict[mesh_name].shape[-1] == 4: |
|
self.alpha_dict[mesh_name] = texture_atlases_dict[mesh_name][:, :, -1] / 255.0 |
|
self.texture_image_dict[mesh_name] = texture_atlases_dict[mesh_name][:, :, :3] |
|
else: |
|
self.alpha_dict[mesh_name] = texture_atlases_dict[mesh_name].sum(axis=-1) > 0 |
|
self.texture_image_dict[mesh_name] = texture_atlases_dict[mesh_name] |
|
|
|
self.device = torch.device(device) |
|
self.class_to_mesh_name = get_class_to_mesh_name_mapping(cfg) |
|
self.default_class = default_class |
|
|
|
self.mesh_vertex_embeddings = { |
|
mesh_name: self.embedder(mesh_name).to(self.device) |
|
for mesh_name in self.class_to_mesh_name.values() |
|
} |
|
|
|
def visualize( |
|
self, |
|
image_bgr: Image, |
|
outputs_boxes_xywh_classes: Tuple[ |
|
Optional[DensePoseEmbeddingPredictorOutput], Optional[Boxes], Optional[List[int]] |
|
], |
|
) -> Image: |
|
image_target_bgr = image_bgr.copy() |
|
if outputs_boxes_xywh_classes[0] is None: |
|
return image_target_bgr |
|
|
|
S, E, N, bboxes_xywh, pred_classes = self.extract_and_check_outputs_and_boxes( |
|
outputs_boxes_xywh_classes |
|
) |
|
|
|
meshes = { |
|
p: create_mesh(self.class_to_mesh_name[p], self.device) for p in np.unique(pred_classes) |
|
} |
|
|
|
for n in range(N): |
|
x, y, w, h = bboxes_xywh[n].int().cpu().numpy() |
|
mesh_name = self.class_to_mesh_name[pred_classes[n]] |
|
closest_vertices, mask = get_closest_vertices_mask_from_ES( |
|
E[[n]], |
|
S[[n]], |
|
h, |
|
w, |
|
self.mesh_vertex_embeddings[mesh_name], |
|
self.device, |
|
) |
|
uv_array = meshes[pred_classes[n]].texcoords[closest_vertices].permute((2, 0, 1)) |
|
uv_array = uv_array.cpu().numpy().clip(0, 1) |
|
textured_image = self.generate_image_with_texture( |
|
image_target_bgr[y : y + h, x : x + w], |
|
uv_array, |
|
mask.cpu().numpy(), |
|
self.class_to_mesh_name[pred_classes[n]], |
|
) |
|
if textured_image is None: |
|
continue |
|
image_target_bgr[y : y + h, x : x + w] = textured_image |
|
|
|
return image_target_bgr |
|
|
|
def generate_image_with_texture(self, bbox_image_bgr, uv_array, mask, mesh_name): |
|
alpha = self.alpha_dict.get(mesh_name) |
|
texture_image = self.texture_image_dict.get(mesh_name) |
|
if alpha is None or texture_image is None: |
|
return None |
|
U, V = uv_array |
|
x_index = (U * texture_image.shape[1]).astype(int) |
|
y_index = (V * texture_image.shape[0]).astype(int) |
|
local_texture = texture_image[y_index, x_index][mask] |
|
local_alpha = np.expand_dims(alpha[y_index, x_index][mask], -1) |
|
output_image = bbox_image_bgr.copy() |
|
output_image[mask] = output_image[mask] * (1 - local_alpha) + local_texture * local_alpha |
|
return output_image.astype(np.uint8) |
|
|