|
|
|
from typing import BinaryIO, Dict, Union |
|
import torch |
|
|
|
|
|
def normalized_coords_transform(x0, y0, w, h): |
|
""" |
|
Coordinates transform that maps top left corner to (-1, -1) and bottom |
|
right corner to (1, 1). Used for torch.grid_sample to initialize the |
|
grid |
|
""" |
|
|
|
def f(p): |
|
return (2 * (p[0] - x0) / w - 1, 2 * (p[1] - y0) / h - 1) |
|
|
|
return f |
|
|
|
|
|
class DensePoseTransformData: |
|
|
|
|
|
MASK_LABEL_SYMMETRIES = [0, 1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 14] |
|
|
|
POINT_LABEL_SYMMETRIES = [ 0, 1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23] |
|
|
|
|
|
def __init__(self, uv_symmetries: Dict[str, torch.Tensor], device: torch.device): |
|
self.mask_label_symmetries = DensePoseTransformData.MASK_LABEL_SYMMETRIES |
|
self.point_label_symmetries = DensePoseTransformData.POINT_LABEL_SYMMETRIES |
|
self.uv_symmetries = uv_symmetries |
|
self.device = torch.device("cpu") |
|
|
|
def to(self, device: torch.device, copy: bool = False) -> "DensePoseTransformData": |
|
""" |
|
Convert transform data to the specified device |
|
|
|
Args: |
|
device (torch.device): device to convert the data to |
|
copy (bool): flag that specifies whether to copy or to reference the data |
|
in case the device is the same |
|
Return: |
|
An instance of `DensePoseTransformData` with data stored on the specified device |
|
""" |
|
if self.device == device and not copy: |
|
return self |
|
uv_symmetry_map = {} |
|
for key in self.uv_symmetries: |
|
uv_symmetry_map[key] = self.uv_symmetries[key].to(device=device, copy=copy) |
|
return DensePoseTransformData(uv_symmetry_map, device) |
|
|
|
@staticmethod |
|
def load(io: Union[str, BinaryIO]): |
|
""" |
|
Args: |
|
io: (str or binary file-like object): input file to load data from |
|
Returns: |
|
An instance of `DensePoseTransformData` with transforms loaded from the file |
|
""" |
|
import scipy.io |
|
|
|
uv_symmetry_map = scipy.io.loadmat(io) |
|
uv_symmetry_map_torch = {} |
|
for key in ["U_transforms", "V_transforms"]: |
|
uv_symmetry_map_torch[key] = [] |
|
map_src = uv_symmetry_map[key] |
|
map_dst = uv_symmetry_map_torch[key] |
|
for i in range(map_src.shape[1]): |
|
map_dst.append(torch.from_numpy(map_src[0, i]).to(dtype=torch.float)) |
|
uv_symmetry_map_torch[key] = torch.stack(map_dst, dim=0) |
|
transform_data = DensePoseTransformData(uv_symmetry_map_torch, device=torch.device("cpu")) |
|
return transform_data |
|
|