|
|
|
import torch |
|
|
|
from densepose.structures.data_relative import DensePoseDataRelative |
|
|
|
|
|
class DensePoseList: |
|
|
|
_TORCH_DEVICE_CPU = torch.device("cpu") |
|
|
|
def __init__(self, densepose_datas, boxes_xyxy_abs, image_size_hw, device=_TORCH_DEVICE_CPU): |
|
assert len(densepose_datas) == len( |
|
boxes_xyxy_abs |
|
), "Attempt to initialize DensePoseList with {} DensePose datas " "and {} boxes".format( |
|
len(densepose_datas), len(boxes_xyxy_abs) |
|
) |
|
self.densepose_datas = [] |
|
for densepose_data in densepose_datas: |
|
assert isinstance(densepose_data, DensePoseDataRelative) or densepose_data is None, ( |
|
"Attempt to initialize DensePoseList with DensePose datas " |
|
"of type {}, expected DensePoseDataRelative".format(type(densepose_data)) |
|
) |
|
densepose_data_ondevice = ( |
|
densepose_data.to(device) if densepose_data is not None else None |
|
) |
|
self.densepose_datas.append(densepose_data_ondevice) |
|
self.boxes_xyxy_abs = boxes_xyxy_abs.to(device) |
|
self.image_size_hw = image_size_hw |
|
self.device = device |
|
|
|
def to(self, device): |
|
if self.device == device: |
|
return self |
|
return DensePoseList(self.densepose_datas, self.boxes_xyxy_abs, self.image_size_hw, device) |
|
|
|
def __iter__(self): |
|
return iter(self.densepose_datas) |
|
|
|
def __len__(self): |
|
return len(self.densepose_datas) |
|
|
|
def __repr__(self): |
|
s = self.__class__.__name__ + "(" |
|
s += "num_instances={}, ".format(len(self.densepose_datas)) |
|
s += "image_width={}, ".format(self.image_size_hw[1]) |
|
s += "image_height={})".format(self.image_size_hw[0]) |
|
return s |
|
|
|
def __getitem__(self, item): |
|
if isinstance(item, int): |
|
densepose_data_rel = self.densepose_datas[item] |
|
return densepose_data_rel |
|
elif isinstance(item, slice): |
|
densepose_datas_rel = self.densepose_datas[item] |
|
boxes_xyxy_abs = self.boxes_xyxy_abs[item] |
|
return DensePoseList( |
|
densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device |
|
) |
|
elif isinstance(item, torch.Tensor) and (item.dtype == torch.bool): |
|
densepose_datas_rel = [self.densepose_datas[i] for i, x in enumerate(item) if x > 0] |
|
boxes_xyxy_abs = self.boxes_xyxy_abs[item] |
|
return DensePoseList( |
|
densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device |
|
) |
|
else: |
|
densepose_datas_rel = [self.densepose_datas[i] for i in item] |
|
boxes_xyxy_abs = self.boxes_xyxy_abs[item] |
|
return DensePoseList( |
|
densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device |
|
) |
|
|