|
|
|
|
|
import io |
|
import numpy as np |
|
import os |
|
from dataclasses import dataclass |
|
from functools import reduce |
|
from operator import mul |
|
from typing import BinaryIO, Dict, Optional, Tuple |
|
import torch |
|
|
|
from detectron2.utils.comm import gather, get_rank |
|
from detectron2.utils.file_io import PathManager |
|
|
|
|
|
@dataclass |
|
class SizeData: |
|
dtype: str |
|
shape: Tuple[int] |
|
|
|
|
|
def _calculate_record_field_size_b(data_schema: Dict[str, SizeData], field_name: str) -> int: |
|
schema = data_schema[field_name] |
|
element_size_b = np.dtype(schema.dtype).itemsize |
|
record_field_size_b = reduce(mul, schema.shape) * element_size_b |
|
return record_field_size_b |
|
|
|
|
|
def _calculate_record_size_b(data_schema: Dict[str, SizeData]) -> int: |
|
record_size_b = 0 |
|
for field_name in data_schema: |
|
record_field_size_b = _calculate_record_field_size_b(data_schema, field_name) |
|
record_size_b += record_field_size_b |
|
return record_size_b |
|
|
|
|
|
def _calculate_record_field_sizes_b(data_schema: Dict[str, SizeData]) -> Dict[str, int]: |
|
field_sizes_b = {} |
|
for field_name in data_schema: |
|
field_sizes_b[field_name] = _calculate_record_field_size_b(data_schema, field_name) |
|
return field_sizes_b |
|
|
|
|
|
class SingleProcessTensorStorage: |
|
""" |
|
Compact tensor storage to keep tensor data of predefined size and type. |
|
""" |
|
|
|
def __init__(self, data_schema: Dict[str, SizeData], storage_impl: BinaryIO): |
|
""" |
|
Construct tensor storage based on information on data shape and size. |
|
Internally uses numpy to interpret the type specification. |
|
The storage must support operations `seek(offset, whence=os.SEEK_SET)` and |
|
`read(size)` to be able to perform the `get` operation. |
|
The storage must support operation `write(bytes)` to be able to perform |
|
the `put` operation. |
|
|
|
Args: |
|
data_schema (dict: str -> SizeData): dictionary which maps tensor name |
|
to its size data (shape and data type), e.g. |
|
``` |
|
{ |
|
"coarse_segm": SizeData(dtype="float32", shape=(112, 112)), |
|
"embedding": SizeData(dtype="float32", shape=(16, 112, 112)), |
|
} |
|
``` |
|
storage_impl (BinaryIO): io instance that handles file-like seek, read |
|
and write operations, e.g. a file handle or a memory buffer like io.BytesIO |
|
""" |
|
self.data_schema = data_schema |
|
self.record_size_b = _calculate_record_size_b(data_schema) |
|
self.record_field_sizes_b = _calculate_record_field_sizes_b(data_schema) |
|
self.storage_impl = storage_impl |
|
self.next_record_id = 0 |
|
|
|
def get(self, record_id: int) -> Dict[str, torch.Tensor]: |
|
""" |
|
Load tensors from the storage by record ID |
|
|
|
Args: |
|
record_id (int): Record ID, for which to load the data |
|
|
|
Return: |
|
dict: str -> tensor: tensor name mapped to tensor data, recorded under the provided ID |
|
""" |
|
self.storage_impl.seek(record_id * self.record_size_b, os.SEEK_SET) |
|
data_bytes = self.storage_impl.read(self.record_size_b) |
|
assert len(data_bytes) == self.record_size_b, ( |
|
f"Expected data size {self.record_size_b} B could not be read: " |
|
f"got {len(data_bytes)} B" |
|
) |
|
record = {} |
|
cur_idx = 0 |
|
|
|
for field_name in sorted(self.data_schema): |
|
schema = self.data_schema[field_name] |
|
field_size_b = self.record_field_sizes_b[field_name] |
|
chunk = data_bytes[cur_idx : cur_idx + field_size_b] |
|
data_np = np.frombuffer( |
|
chunk, dtype=schema.dtype, count=reduce(mul, schema.shape) |
|
).reshape(schema.shape) |
|
record[field_name] = torch.from_numpy(data_np) |
|
cur_idx += field_size_b |
|
return record |
|
|
|
def put(self, data: Dict[str, torch.Tensor]) -> int: |
|
""" |
|
Store tensors in the storage |
|
|
|
Args: |
|
data (dict: str -> tensor): data to store, a dictionary which maps |
|
tensor names into tensors; tensor shapes must match those specified |
|
in data schema. |
|
Return: |
|
int: record ID, under which the data is stored |
|
""" |
|
|
|
for field_name in sorted(self.data_schema): |
|
assert ( |
|
field_name in data |
|
), f"Field '{field_name}' not present in data: data keys are {data.keys()}" |
|
value = data[field_name] |
|
assert value.shape == self.data_schema[field_name].shape, ( |
|
f"Mismatched tensor shapes for field '{field_name}': " |
|
f"expected {self.data_schema[field_name].shape}, got {value.shape}" |
|
) |
|
data_bytes = value.cpu().numpy().tobytes() |
|
assert len(data_bytes) == self.record_field_sizes_b[field_name], ( |
|
f"Expected field {field_name} to be of size " |
|
f"{self.record_field_sizes_b[field_name]} B, got {len(data_bytes)} B" |
|
) |
|
self.storage_impl.write(data_bytes) |
|
record_id = self.next_record_id |
|
self.next_record_id += 1 |
|
return record_id |
|
|
|
|
|
class SingleProcessFileTensorStorage(SingleProcessTensorStorage): |
|
""" |
|
Implementation of a single process tensor storage which stores data in a file |
|
""" |
|
|
|
def __init__(self, data_schema: Dict[str, SizeData], fpath: str, mode: str): |
|
self.fpath = fpath |
|
assert "b" in mode, f"Tensor storage should be opened in binary mode, got '{mode}'" |
|
if "w" in mode: |
|
|
|
file_h = PathManager.open(fpath, mode) |
|
elif "r" in mode: |
|
local_fpath = PathManager.get_local_path(fpath) |
|
file_h = open(local_fpath, mode) |
|
else: |
|
raise ValueError(f"Unsupported file mode {mode}, supported modes: rb, wb") |
|
super().__init__(data_schema, file_h) |
|
|
|
|
|
class SingleProcessRamTensorStorage(SingleProcessTensorStorage): |
|
""" |
|
Implementation of a single process tensor storage which stores data in RAM |
|
""" |
|
|
|
def __init__(self, data_schema: Dict[str, SizeData], buf: io.BytesIO): |
|
super().__init__(data_schema, buf) |
|
|
|
|
|
class MultiProcessTensorStorage: |
|
""" |
|
Representation of a set of tensor storages created by individual processes, |
|
allows to access those storages from a single owner process. The storages |
|
should either be shared or broadcasted to the owner process. |
|
The processes are identified by their rank, data is uniquely defined by |
|
the rank of the process and the record ID. |
|
""" |
|
|
|
def __init__(self, rank_to_storage: Dict[int, SingleProcessTensorStorage]): |
|
self.rank_to_storage = rank_to_storage |
|
|
|
def get(self, rank: int, record_id: int) -> Dict[str, torch.Tensor]: |
|
storage = self.rank_to_storage[rank] |
|
return storage.get(record_id) |
|
|
|
def put(self, rank: int, data: Dict[str, torch.Tensor]) -> int: |
|
storage = self.rank_to_storage[rank] |
|
return storage.put(data) |
|
|
|
|
|
class MultiProcessFileTensorStorage(MultiProcessTensorStorage): |
|
def __init__(self, data_schema: Dict[str, SizeData], rank_to_fpath: Dict[int, str], mode: str): |
|
rank_to_storage = { |
|
rank: SingleProcessFileTensorStorage(data_schema, fpath, mode) |
|
for rank, fpath in rank_to_fpath.items() |
|
} |
|
super().__init__(rank_to_storage) |
|
|
|
|
|
class MultiProcessRamTensorStorage(MultiProcessTensorStorage): |
|
def __init__(self, data_schema: Dict[str, SizeData], rank_to_buffer: Dict[int, io.BytesIO]): |
|
rank_to_storage = { |
|
rank: SingleProcessRamTensorStorage(data_schema, buf) |
|
for rank, buf in rank_to_buffer.items() |
|
} |
|
super().__init__(rank_to_storage) |
|
|
|
|
|
def _ram_storage_gather( |
|
storage: SingleProcessRamTensorStorage, dst_rank: int = 0 |
|
) -> Optional[MultiProcessRamTensorStorage]: |
|
storage.storage_impl.seek(0, os.SEEK_SET) |
|
|
|
|
|
data_list = gather(storage.storage_impl.read(), dst=dst_rank) |
|
if get_rank() != dst_rank: |
|
return None |
|
rank_to_buffer = {i: io.BytesIO(data_list[i]) for i in range(len(data_list))} |
|
multiprocess_storage = MultiProcessRamTensorStorage(storage.data_schema, rank_to_buffer) |
|
return multiprocess_storage |
|
|
|
|
|
def _file_storage_gather( |
|
storage: SingleProcessFileTensorStorage, |
|
dst_rank: int = 0, |
|
mode: str = "rb", |
|
) -> Optional[MultiProcessFileTensorStorage]: |
|
storage.storage_impl.close() |
|
fpath_list = gather(storage.fpath, dst=dst_rank) |
|
if get_rank() != dst_rank: |
|
return None |
|
rank_to_fpath = {i: fpath_list[i] for i in range(len(fpath_list))} |
|
return MultiProcessFileTensorStorage(storage.data_schema, rank_to_fpath, mode) |
|
|
|
|
|
def storage_gather( |
|
storage: SingleProcessTensorStorage, dst_rank: int = 0 |
|
) -> Optional[MultiProcessTensorStorage]: |
|
if isinstance(storage, SingleProcessRamTensorStorage): |
|
return _ram_storage_gather(storage, dst_rank) |
|
elif isinstance(storage, SingleProcessFileTensorStorage): |
|
return _file_storage_gather(storage, dst_rank) |
|
raise Exception(f"Unsupported storage for gather operation: {storage}") |
|
|