|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__author__ = "tsungyi" |
|
|
|
import copy |
|
import datetime |
|
import logging |
|
import numpy as np |
|
import pickle |
|
import time |
|
from collections import defaultdict |
|
from enum import Enum |
|
from typing import Any, Dict, Tuple |
|
import scipy.spatial.distance as ssd |
|
import torch |
|
import torch.nn.functional as F |
|
from pycocotools import mask as maskUtils |
|
from scipy.io import loadmat |
|
from scipy.ndimage import zoom as spzoom |
|
|
|
from detectron2.utils.file_io import PathManager |
|
|
|
from densepose.converters.chart_output_to_chart_result import resample_uv_tensors_to_bbox |
|
from densepose.converters.segm_to_mask import ( |
|
resample_coarse_segm_tensor_to_bbox, |
|
resample_fine_and_coarse_segm_tensors_to_bbox, |
|
) |
|
from densepose.modeling.cse.utils import squared_euclidean_distance_matrix |
|
from densepose.structures import DensePoseDataRelative |
|
from densepose.structures.mesh import create_mesh |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class DensePoseEvalMode(str, Enum): |
|
|
|
GPSM = "gpsm" |
|
|
|
GPS = "gps" |
|
|
|
IOU = "iou" |
|
|
|
|
|
class DensePoseDataMode(str, Enum): |
|
|
|
IUV_DT = "iuvdt" |
|
|
|
IUV_GT = "iuvgt" |
|
|
|
I_GT_UV_0 = "igtuv0" |
|
|
|
I_GT_UV_DT = "igtuvdt" |
|
|
|
I_DT_UV_0 = "idtuv0" |
|
|
|
|
|
class DensePoseCocoEval: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
cocoGt=None, |
|
cocoDt=None, |
|
iouType: str = "densepose", |
|
multi_storage=None, |
|
embedder=None, |
|
dpEvalMode: DensePoseEvalMode = DensePoseEvalMode.GPS, |
|
dpDataMode: DensePoseDataMode = DensePoseDataMode.IUV_DT, |
|
): |
|
""" |
|
Initialize CocoEval using coco APIs for gt and dt |
|
:param cocoGt: coco object with ground truth annotations |
|
:param cocoDt: coco object with detection results |
|
:return: None |
|
""" |
|
self.cocoGt = cocoGt |
|
self.cocoDt = cocoDt |
|
self.multi_storage = multi_storage |
|
self.embedder = embedder |
|
self._dpEvalMode = dpEvalMode |
|
self._dpDataMode = dpDataMode |
|
self.evalImgs = defaultdict(list) |
|
self.eval = {} |
|
self._gts = defaultdict(list) |
|
self._dts = defaultdict(list) |
|
self.params = Params(iouType=iouType) |
|
self._paramsEval = {} |
|
self.stats = [] |
|
self.ious = {} |
|
if cocoGt is not None: |
|
self.params.imgIds = sorted(cocoGt.getImgIds()) |
|
self.params.catIds = sorted(cocoGt.getCatIds()) |
|
self.ignoreThrBB = 0.7 |
|
self.ignoreThrUV = 0.9 |
|
|
|
def _loadGEval(self): |
|
smpl_subdiv_fpath = PathManager.get_local_path( |
|
"https://dl.fbaipublicfiles.com/densepose/data/SMPL_subdiv.mat" |
|
) |
|
pdist_transform_fpath = PathManager.get_local_path( |
|
"https://dl.fbaipublicfiles.com/densepose/data/SMPL_SUBDIV_TRANSFORM.mat" |
|
) |
|
pdist_matrix_fpath = PathManager.get_local_path( |
|
"https://dl.fbaipublicfiles.com/densepose/data/Pdist_matrix.pkl", timeout_sec=120 |
|
) |
|
SMPL_subdiv = loadmat(smpl_subdiv_fpath) |
|
self.PDIST_transform = loadmat(pdist_transform_fpath) |
|
self.PDIST_transform = self.PDIST_transform["index"].squeeze() |
|
UV = np.array([SMPL_subdiv["U_subdiv"], SMPL_subdiv["V_subdiv"]]).squeeze() |
|
ClosestVertInds = np.arange(UV.shape[1]) + 1 |
|
self.Part_UVs = [] |
|
self.Part_ClosestVertInds = [] |
|
for i in np.arange(24): |
|
self.Part_UVs.append(UV[:, SMPL_subdiv["Part_ID_subdiv"].squeeze() == (i + 1)]) |
|
self.Part_ClosestVertInds.append( |
|
ClosestVertInds[SMPL_subdiv["Part_ID_subdiv"].squeeze() == (i + 1)] |
|
) |
|
|
|
with open(pdist_matrix_fpath, "rb") as hFile: |
|
arrays = pickle.load(hFile, encoding="latin1") |
|
self.Pdist_matrix = arrays["Pdist_matrix"] |
|
self.Part_ids = np.array(SMPL_subdiv["Part_ID_subdiv"].squeeze()) |
|
|
|
self.Mean_Distances = np.array([0, 0.351, 0.107, 0.126, 0.237, 0.173, 0.142, 0.128, 0.150]) |
|
|
|
self.CoarseParts = np.array( |
|
[0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8] |
|
) |
|
|
|
def _prepare(self): |
|
""" |
|
Prepare ._gts and ._dts for evaluation based on params |
|
:return: None |
|
""" |
|
|
|
def _toMask(anns, coco): |
|
|
|
for ann in anns: |
|
|
|
|
|
|
|
|
|
segm = ann["segmentation"] |
|
if type(segm) == list and len(segm) == 0: |
|
ann["segmentation"] = None |
|
continue |
|
rle = coco.annToRLE(ann) |
|
ann["segmentation"] = rle |
|
|
|
def _getIgnoreRegion(iid, coco): |
|
img = coco.imgs[iid] |
|
|
|
if "ignore_regions_x" not in img.keys(): |
|
return None |
|
|
|
if len(img["ignore_regions_x"]) == 0: |
|
return None |
|
|
|
rgns_merged = [ |
|
[v for xy in zip(region_x, region_y) for v in xy] |
|
for region_x, region_y in zip(img["ignore_regions_x"], img["ignore_regions_y"]) |
|
] |
|
rles = maskUtils.frPyObjects(rgns_merged, img["height"], img["width"]) |
|
rle = maskUtils.merge(rles) |
|
return maskUtils.decode(rle) |
|
|
|
def _checkIgnore(dt, iregion): |
|
if iregion is None: |
|
return True |
|
|
|
bb = np.array(dt["bbox"]).astype(int) |
|
x1, y1, x2, y2 = bb[0], bb[1], bb[0] + bb[2], bb[1] + bb[3] |
|
x2 = min([x2, iregion.shape[1]]) |
|
y2 = min([y2, iregion.shape[0]]) |
|
|
|
if bb[2] * bb[3] == 0: |
|
return False |
|
|
|
crop_iregion = iregion[y1:y2, x1:x2] |
|
|
|
if crop_iregion.sum() == 0: |
|
return True |
|
|
|
if "densepose" not in dt.keys(): |
|
return crop_iregion.sum() / bb[2] / bb[3] < self.ignoreThrBB |
|
|
|
|
|
ignoremask = np.require(crop_iregion, requirements=["F"]) |
|
mask = self._extract_mask(dt) |
|
uvmask = np.require(np.asarray(mask > 0), dtype=np.uint8, requirements=["F"]) |
|
uvmask_ = maskUtils.encode(uvmask) |
|
ignoremask_ = maskUtils.encode(ignoremask) |
|
uviou = maskUtils.iou([uvmask_], [ignoremask_], [1])[0] |
|
return uviou < self.ignoreThrUV |
|
|
|
p = self.params |
|
|
|
if p.useCats: |
|
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) |
|
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) |
|
else: |
|
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds)) |
|
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds)) |
|
|
|
imns = self.cocoGt.loadImgs(p.imgIds) |
|
self.size_mapping = {} |
|
for im in imns: |
|
self.size_mapping[im["id"]] = [im["height"], im["width"]] |
|
|
|
|
|
if p.iouType == "densepose": |
|
self._loadGEval() |
|
|
|
|
|
if p.iouType == "segm": |
|
_toMask(gts, self.cocoGt) |
|
_toMask(dts, self.cocoDt) |
|
|
|
|
|
for gt in gts: |
|
gt["ignore"] = gt["ignore"] if "ignore" in gt else 0 |
|
gt["ignore"] = "iscrowd" in gt and gt["iscrowd"] |
|
if p.iouType == "keypoints": |
|
gt["ignore"] = (gt["num_keypoints"] == 0) or gt["ignore"] |
|
if p.iouType == "densepose": |
|
gt["ignore"] = ("dp_x" in gt) == 0 |
|
if p.iouType == "segm": |
|
gt["ignore"] = gt["segmentation"] is None |
|
|
|
self._gts = defaultdict(list) |
|
self._dts = defaultdict(list) |
|
self._igrgns = defaultdict(list) |
|
|
|
for gt in gts: |
|
iid = gt["image_id"] |
|
if iid not in self._igrgns.keys(): |
|
self._igrgns[iid] = _getIgnoreRegion(iid, self.cocoGt) |
|
if _checkIgnore(gt, self._igrgns[iid]): |
|
self._gts[iid, gt["category_id"]].append(gt) |
|
for dt in dts: |
|
iid = dt["image_id"] |
|
if (iid not in self._igrgns) or _checkIgnore(dt, self._igrgns[iid]): |
|
self._dts[iid, dt["category_id"]].append(dt) |
|
|
|
self.evalImgs = defaultdict(list) |
|
self.eval = {} |
|
|
|
def evaluate(self): |
|
""" |
|
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs |
|
:return: None |
|
""" |
|
tic = time.time() |
|
logger.info("Running per image DensePose evaluation... {}".format(self.params.iouType)) |
|
p = self.params |
|
|
|
if p.useSegm is not None: |
|
p.iouType = "segm" if p.useSegm == 1 else "bbox" |
|
logger.info("useSegm (deprecated) is not None. Running DensePose evaluation") |
|
p.imgIds = list(np.unique(p.imgIds)) |
|
if p.useCats: |
|
p.catIds = list(np.unique(p.catIds)) |
|
p.maxDets = sorted(p.maxDets) |
|
self.params = p |
|
|
|
self._prepare() |
|
|
|
catIds = p.catIds if p.useCats else [-1] |
|
|
|
if p.iouType in ["segm", "bbox"]: |
|
computeIoU = self.computeIoU |
|
elif p.iouType == "keypoints": |
|
computeIoU = self.computeOks |
|
elif p.iouType == "densepose": |
|
computeIoU = self.computeOgps |
|
if self._dpEvalMode in {DensePoseEvalMode.GPSM, DensePoseEvalMode.IOU}: |
|
self.real_ious = { |
|
(imgId, catId): self.computeDPIoU(imgId, catId) |
|
for imgId in p.imgIds |
|
for catId in catIds |
|
} |
|
|
|
self.ious = { |
|
(imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds |
|
} |
|
|
|
evaluateImg = self.evaluateImg |
|
maxDet = p.maxDets[-1] |
|
self.evalImgs = [ |
|
evaluateImg(imgId, catId, areaRng, maxDet) |
|
for catId in catIds |
|
for areaRng in p.areaRng |
|
for imgId in p.imgIds |
|
] |
|
self._paramsEval = copy.deepcopy(self.params) |
|
toc = time.time() |
|
logger.info("DensePose evaluation DONE (t={:0.2f}s).".format(toc - tic)) |
|
|
|
def getDensePoseMask(self, polys): |
|
maskGen = np.zeros([256, 256]) |
|
stop = min(len(polys) + 1, 15) |
|
for i in range(1, stop): |
|
if polys[i - 1]: |
|
currentMask = maskUtils.decode(polys[i - 1]) |
|
maskGen[currentMask > 0] = i |
|
return maskGen |
|
|
|
def _generate_rlemask_on_image(self, mask, imgId, data): |
|
bbox_xywh = np.array(data["bbox"]) |
|
x, y, w, h = bbox_xywh |
|
im_h, im_w = self.size_mapping[imgId] |
|
im_mask = np.zeros((im_h, im_w), dtype=np.uint8) |
|
if mask is not None: |
|
x0 = max(int(x), 0) |
|
x1 = min(int(x + w), im_w, int(x) + mask.shape[1]) |
|
y0 = max(int(y), 0) |
|
y1 = min(int(y + h), im_h, int(y) + mask.shape[0]) |
|
y = int(y) |
|
x = int(x) |
|
im_mask[y0:y1, x0:x1] = mask[y0 - y : y1 - y, x0 - x : x1 - x] |
|
im_mask = np.require(np.asarray(im_mask > 0), dtype=np.uint8, requirements=["F"]) |
|
rle_mask = maskUtils.encode(np.array(im_mask[:, :, np.newaxis], order="F"))[0] |
|
return rle_mask |
|
|
|
def computeDPIoU(self, imgId, catId): |
|
p = self.params |
|
if p.useCats: |
|
gt = self._gts[imgId, catId] |
|
dt = self._dts[imgId, catId] |
|
else: |
|
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] |
|
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] |
|
if len(gt) == 0 and len(dt) == 0: |
|
return [] |
|
inds = np.argsort([-d["score"] for d in dt], kind="mergesort") |
|
dt = [dt[i] for i in inds] |
|
if len(dt) > p.maxDets[-1]: |
|
dt = dt[0 : p.maxDets[-1]] |
|
|
|
gtmasks = [] |
|
for g in gt: |
|
if DensePoseDataRelative.S_KEY in g: |
|
|
|
mask = np.minimum(self.getDensePoseMask(g[DensePoseDataRelative.S_KEY]), 1.0) |
|
_, _, w, h = g["bbox"] |
|
scale_x = float(max(w, 1)) / mask.shape[1] |
|
scale_y = float(max(h, 1)) / mask.shape[0] |
|
mask = spzoom(mask, (scale_y, scale_x), order=1, prefilter=False) |
|
mask = np.array(mask > 0.5, dtype=np.uint8) |
|
rle_mask = self._generate_rlemask_on_image(mask, imgId, g) |
|
elif "segmentation" in g: |
|
segmentation = g["segmentation"] |
|
if isinstance(segmentation, list) and segmentation: |
|
|
|
im_h, im_w = self.size_mapping[imgId] |
|
rles = maskUtils.frPyObjects(segmentation, im_h, im_w) |
|
rle_mask = maskUtils.merge(rles) |
|
elif isinstance(segmentation, dict): |
|
if isinstance(segmentation["counts"], list): |
|
|
|
im_h, im_w = self.size_mapping[imgId] |
|
rle_mask = maskUtils.frPyObjects(segmentation, im_h, im_w) |
|
else: |
|
|
|
rle_mask = segmentation |
|
else: |
|
rle_mask = self._generate_rlemask_on_image(None, imgId, g) |
|
else: |
|
rle_mask = self._generate_rlemask_on_image(None, imgId, g) |
|
gtmasks.append(rle_mask) |
|
|
|
dtmasks = [] |
|
for d in dt: |
|
mask = self._extract_mask(d) |
|
mask = np.require(np.asarray(mask > 0), dtype=np.uint8, requirements=["F"]) |
|
rle_mask = self._generate_rlemask_on_image(mask, imgId, d) |
|
dtmasks.append(rle_mask) |
|
|
|
|
|
iscrowd = [int(o.get("iscrowd", 0)) for o in gt] |
|
iousDP = maskUtils.iou(dtmasks, gtmasks, iscrowd) |
|
return iousDP |
|
|
|
def computeIoU(self, imgId, catId): |
|
p = self.params |
|
if p.useCats: |
|
gt = self._gts[imgId, catId] |
|
dt = self._dts[imgId, catId] |
|
else: |
|
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] |
|
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] |
|
if len(gt) == 0 and len(dt) == 0: |
|
return [] |
|
inds = np.argsort([-d["score"] for d in dt], kind="mergesort") |
|
dt = [dt[i] for i in inds] |
|
if len(dt) > p.maxDets[-1]: |
|
dt = dt[0 : p.maxDets[-1]] |
|
|
|
if p.iouType == "segm": |
|
g = [g["segmentation"] for g in gt if g["segmentation"] is not None] |
|
d = [d["segmentation"] for d in dt if d["segmentation"] is not None] |
|
elif p.iouType == "bbox": |
|
g = [g["bbox"] for g in gt] |
|
d = [d["bbox"] for d in dt] |
|
else: |
|
raise Exception("unknown iouType for iou computation") |
|
|
|
|
|
iscrowd = [int(o.get("iscrowd", 0)) for o in gt] |
|
ious = maskUtils.iou(d, g, iscrowd) |
|
return ious |
|
|
|
def computeOks(self, imgId, catId): |
|
p = self.params |
|
|
|
gts = self._gts[imgId, catId] |
|
dts = self._dts[imgId, catId] |
|
inds = np.argsort([-d["score"] for d in dts], kind="mergesort") |
|
dts = [dts[i] for i in inds] |
|
if len(dts) > p.maxDets[-1]: |
|
dts = dts[0 : p.maxDets[-1]] |
|
|
|
if len(gts) == 0 or len(dts) == 0: |
|
return [] |
|
ious = np.zeros((len(dts), len(gts))) |
|
sigmas = ( |
|
np.array( |
|
[ |
|
0.26, |
|
0.25, |
|
0.25, |
|
0.35, |
|
0.35, |
|
0.79, |
|
0.79, |
|
0.72, |
|
0.72, |
|
0.62, |
|
0.62, |
|
1.07, |
|
1.07, |
|
0.87, |
|
0.87, |
|
0.89, |
|
0.89, |
|
] |
|
) |
|
/ 10.0 |
|
) |
|
vars = (sigmas * 2) ** 2 |
|
k = len(sigmas) |
|
|
|
for j, gt in enumerate(gts): |
|
|
|
g = np.array(gt["keypoints"]) |
|
xg = g[0::3] |
|
yg = g[1::3] |
|
vg = g[2::3] |
|
k1 = np.count_nonzero(vg > 0) |
|
bb = gt["bbox"] |
|
x0 = bb[0] - bb[2] |
|
x1 = bb[0] + bb[2] * 2 |
|
y0 = bb[1] - bb[3] |
|
y1 = bb[1] + bb[3] * 2 |
|
for i, dt in enumerate(dts): |
|
d = np.array(dt["keypoints"]) |
|
xd = d[0::3] |
|
yd = d[1::3] |
|
if k1 > 0: |
|
|
|
dx = xd - xg |
|
dy = yd - yg |
|
else: |
|
|
|
z = np.zeros(k) |
|
dx = np.max((z, x0 - xd), axis=0) + np.max((z, xd - x1), axis=0) |
|
dy = np.max((z, y0 - yd), axis=0) + np.max((z, yd - y1), axis=0) |
|
e = (dx**2 + dy**2) / vars / (gt["area"] + np.spacing(1)) / 2 |
|
if k1 > 0: |
|
e = e[vg > 0] |
|
ious[i, j] = np.sum(np.exp(-e)) / e.shape[0] |
|
return ious |
|
|
|
def _extract_mask(self, dt: Dict[str, Any]) -> np.ndarray: |
|
if "densepose" in dt: |
|
densepose_results_quantized = dt["densepose"] |
|
return densepose_results_quantized.labels_uv_uint8[0].numpy() |
|
elif "cse_mask" in dt: |
|
return dt["cse_mask"] |
|
elif "coarse_segm" in dt: |
|
dy = max(int(dt["bbox"][3]), 1) |
|
dx = max(int(dt["bbox"][2]), 1) |
|
return ( |
|
F.interpolate( |
|
dt["coarse_segm"].unsqueeze(0), |
|
(dy, dx), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
.squeeze(0) |
|
.argmax(0) |
|
.numpy() |
|
.astype(np.uint8) |
|
) |
|
elif "record_id" in dt: |
|
assert ( |
|
self.multi_storage is not None |
|
), f"Storage record id encountered in a detection {dt}, but no storage provided!" |
|
record = self.multi_storage.get(dt["rank"], dt["record_id"]) |
|
coarse_segm = record["coarse_segm"] |
|
dy = max(int(dt["bbox"][3]), 1) |
|
dx = max(int(dt["bbox"][2]), 1) |
|
return ( |
|
F.interpolate( |
|
coarse_segm.unsqueeze(0), |
|
(dy, dx), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
.squeeze(0) |
|
.argmax(0) |
|
.numpy() |
|
.astype(np.uint8) |
|
) |
|
else: |
|
raise Exception(f"No mask data in the detection: {dt}") |
|
raise ValueError('The prediction dict needs to contain either "densepose" or "cse_mask"') |
|
|
|
def _extract_iuv( |
|
self, densepose_data: np.ndarray, py: np.ndarray, px: np.ndarray, gt: Dict[str, Any] |
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: |
|
""" |
|
Extract arrays of I, U and V values at given points as numpy arrays |
|
given the data mode stored in self._dpDataMode |
|
""" |
|
if self._dpDataMode == DensePoseDataMode.IUV_DT: |
|
|
|
ipoints = densepose_data[0, py, px] |
|
upoints = densepose_data[1, py, px] / 255.0 |
|
vpoints = densepose_data[2, py, px] / 255.0 |
|
elif self._dpDataMode == DensePoseDataMode.IUV_GT: |
|
|
|
ipoints = np.array(gt["dp_I"]) |
|
upoints = np.array(gt["dp_U"]) |
|
vpoints = np.array(gt["dp_V"]) |
|
elif self._dpDataMode == DensePoseDataMode.I_GT_UV_0: |
|
|
|
ipoints = np.array(gt["dp_I"]) |
|
upoints = upoints * 0.0 |
|
vpoints = vpoints * 0.0 |
|
elif self._dpDataMode == DensePoseDataMode.I_GT_UV_DT: |
|
|
|
ipoints = np.array(gt["dp_I"]) |
|
upoints = densepose_data[1, py, px] / 255.0 |
|
vpoints = densepose_data[2, py, px] / 255.0 |
|
elif self._dpDataMode == DensePoseDataMode.I_DT_UV_0: |
|
|
|
ipoints = densepose_data[0, py, px] |
|
upoints = upoints * 0.0 |
|
vpoints = vpoints * 0.0 |
|
else: |
|
raise ValueError(f"Unknown data mode: {self._dpDataMode}") |
|
return ipoints, upoints, vpoints |
|
|
|
def computeOgps_single_pair(self, dt, gt, py, px, pt_mask): |
|
if "densepose" in dt: |
|
ipoints, upoints, vpoints = self.extract_iuv_from_quantized(dt, gt, py, px, pt_mask) |
|
return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints) |
|
elif "u" in dt: |
|
ipoints, upoints, vpoints = self.extract_iuv_from_raw(dt, gt, py, px, pt_mask) |
|
return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints) |
|
elif "record_id" in dt: |
|
assert ( |
|
self.multi_storage is not None |
|
), f"Storage record id encountered in detection {dt}, but no storage provided!" |
|
record = self.multi_storage.get(dt["rank"], dt["record_id"]) |
|
record["bbox"] = dt["bbox"] |
|
if "u" in record: |
|
ipoints, upoints, vpoints = self.extract_iuv_from_raw(record, gt, py, px, pt_mask) |
|
return self.computeOgps_single_pair_iuv(dt, gt, ipoints, upoints, vpoints) |
|
elif "embedding" in record: |
|
return self.computeOgps_single_pair_cse( |
|
dt, |
|
gt, |
|
py, |
|
px, |
|
pt_mask, |
|
record["coarse_segm"], |
|
record["embedding"], |
|
record["bbox"], |
|
) |
|
else: |
|
raise Exception(f"Unknown record format: {record}") |
|
elif "embedding" in dt: |
|
return self.computeOgps_single_pair_cse( |
|
dt, gt, py, px, pt_mask, dt["coarse_segm"], dt["embedding"], dt["bbox"] |
|
) |
|
raise Exception(f"Unknown detection format: {dt}") |
|
|
|
def extract_iuv_from_quantized(self, dt, gt, py, px, pt_mask): |
|
densepose_results_quantized = dt["densepose"] |
|
ipoints, upoints, vpoints = self._extract_iuv( |
|
densepose_results_quantized.labels_uv_uint8.numpy(), py, px, gt |
|
) |
|
ipoints[pt_mask == -1] = 0 |
|
return ipoints, upoints, vpoints |
|
|
|
def extract_iuv_from_raw(self, dt, gt, py, px, pt_mask): |
|
labels_dt = resample_fine_and_coarse_segm_tensors_to_bbox( |
|
dt["fine_segm"].unsqueeze(0), |
|
dt["coarse_segm"].unsqueeze(0), |
|
dt["bbox"], |
|
) |
|
uv = resample_uv_tensors_to_bbox( |
|
dt["u"].unsqueeze(0), dt["v"].unsqueeze(0), labels_dt.squeeze(0), dt["bbox"] |
|
) |
|
labels_uv_uint8 = torch.cat((labels_dt.byte(), (uv * 255).clamp(0, 255).byte())) |
|
ipoints, upoints, vpoints = self._extract_iuv(labels_uv_uint8.numpy(), py, px, gt) |
|
ipoints[pt_mask == -1] = 0 |
|
return ipoints, upoints, vpoints |
|
|
|
def computeOgps_single_pair_iuv(self, dt, gt, ipoints, upoints, vpoints): |
|
cVertsGT, ClosestVertsGTTransformed = self.findAllClosestVertsGT(gt) |
|
cVerts = self.findAllClosestVertsUV(upoints, vpoints, ipoints) |
|
|
|
dist = self.getDistancesUV(ClosestVertsGTTransformed, cVerts) |
|
|
|
|
|
|
|
Current_Mean_Distances = self.Mean_Distances[ |
|
self.CoarseParts[self.Part_ids[cVertsGT[cVertsGT > 0].astype(int) - 1]] |
|
] |
|
return dist, Current_Mean_Distances |
|
|
|
def computeOgps_single_pair_cse( |
|
self, dt, gt, py, px, pt_mask, coarse_segm, embedding, bbox_xywh_abs |
|
): |
|
|
|
cVertsGT = torch.as_tensor(gt["dp_vertex"], dtype=torch.int64) |
|
|
|
labels_dt = resample_coarse_segm_tensor_to_bbox( |
|
coarse_segm.unsqueeze(0), bbox_xywh_abs |
|
).squeeze(0) |
|
x, y, w, h = bbox_xywh_abs |
|
|
|
embedding = F.interpolate( |
|
embedding.unsqueeze(0), (int(h), int(w)), mode="bilinear", align_corners=False |
|
).squeeze(0) |
|
|
|
py_pt = torch.from_numpy(py[pt_mask > -1]) |
|
px_pt = torch.from_numpy(px[pt_mask > -1]) |
|
cVerts = torch.ones_like(cVertsGT) * -1 |
|
cVerts[pt_mask > -1] = self.findClosestVertsCse( |
|
embedding, py_pt, px_pt, labels_dt, gt["ref_model"] |
|
) |
|
|
|
dist = self.getDistancesCse(cVertsGT, cVerts, gt["ref_model"]) |
|
|
|
if (gt["ref_model"] == "smpl_27554") and ("dp_I" in gt): |
|
Current_Mean_Distances = self.Mean_Distances[ |
|
self.CoarseParts[np.array(gt["dp_I"], dtype=int)] |
|
] |
|
else: |
|
Current_Mean_Distances = 0.255 |
|
return dist, Current_Mean_Distances |
|
|
|
def computeOgps(self, imgId, catId): |
|
p = self.params |
|
|
|
g = self._gts[imgId, catId] |
|
d = self._dts[imgId, catId] |
|
inds = np.argsort([-d_["score"] for d_ in d], kind="mergesort") |
|
d = [d[i] for i in inds] |
|
if len(d) > p.maxDets[-1]: |
|
d = d[0 : p.maxDets[-1]] |
|
|
|
if len(g) == 0 or len(d) == 0: |
|
return [] |
|
ious = np.zeros((len(d), len(g))) |
|
|
|
|
|
|
|
|
|
for j, gt in enumerate(g): |
|
if not gt["ignore"]: |
|
g_ = gt["bbox"] |
|
for i, dt in enumerate(d): |
|
|
|
dy = int(dt["bbox"][3]) |
|
dx = int(dt["bbox"][2]) |
|
dp_x = np.array(gt["dp_x"]) * g_[2] / 255.0 |
|
dp_y = np.array(gt["dp_y"]) * g_[3] / 255.0 |
|
py = (dp_y + g_[1] - dt["bbox"][1]).astype(int) |
|
px = (dp_x + g_[0] - dt["bbox"][0]).astype(int) |
|
|
|
pts = np.zeros(len(px)) |
|
pts[px >= dx] = -1 |
|
pts[py >= dy] = -1 |
|
pts[px < 0] = -1 |
|
pts[py < 0] = -1 |
|
if len(pts) < 1: |
|
ogps = 0.0 |
|
elif np.max(pts) == -1: |
|
ogps = 0.0 |
|
else: |
|
px[pts == -1] = 0 |
|
py[pts == -1] = 0 |
|
dists_between_matches, dist_norm_coeffs = self.computeOgps_single_pair( |
|
dt, gt, py, px, pts |
|
) |
|
|
|
ogps_values = np.exp( |
|
-(dists_between_matches**2) / (2 * (dist_norm_coeffs**2)) |
|
) |
|
|
|
ogps = np.mean(ogps_values) if len(ogps_values) > 0 else 0.0 |
|
ious[i, j] = ogps |
|
|
|
gbb = [gt["bbox"] for gt in g] |
|
dbb = [dt["bbox"] for dt in d] |
|
|
|
|
|
iscrowd = [int(o.get("iscrowd", 0)) for o in g] |
|
ious_bb = maskUtils.iou(dbb, gbb, iscrowd) |
|
return ious, ious_bb |
|
|
|
def evaluateImg(self, imgId, catId, aRng, maxDet): |
|
""" |
|
perform evaluation for single category and image |
|
:return: dict (single image results) |
|
""" |
|
|
|
p = self.params |
|
if p.useCats: |
|
gt = self._gts[imgId, catId] |
|
dt = self._dts[imgId, catId] |
|
else: |
|
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] |
|
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] |
|
if len(gt) == 0 and len(dt) == 0: |
|
return None |
|
|
|
for g in gt: |
|
|
|
if g["ignore"] or (g["area"] < aRng[0] or g["area"] > aRng[1]): |
|
g["_ignore"] = True |
|
else: |
|
g["_ignore"] = False |
|
|
|
|
|
gtind = np.argsort([g["_ignore"] for g in gt], kind="mergesort") |
|
gt = [gt[i] for i in gtind] |
|
dtind = np.argsort([-d["score"] for d in dt], kind="mergesort") |
|
dt = [dt[i] for i in dtind[0:maxDet]] |
|
iscrowd = [int(o.get("iscrowd", 0)) for o in gt] |
|
|
|
if p.iouType == "densepose": |
|
|
|
|
|
|
|
ious = ( |
|
self.ious[imgId, catId][0][:, gtind] |
|
if len(self.ious[imgId, catId]) > 0 |
|
else self.ious[imgId, catId] |
|
) |
|
ioubs = ( |
|
self.ious[imgId, catId][1][:, gtind] |
|
if len(self.ious[imgId, catId]) > 0 |
|
else self.ious[imgId, catId] |
|
) |
|
if self._dpEvalMode in {DensePoseEvalMode.GPSM, DensePoseEvalMode.IOU}: |
|
iousM = ( |
|
self.real_ious[imgId, catId][:, gtind] |
|
if len(self.real_ious[imgId, catId]) > 0 |
|
else self.real_ious[imgId, catId] |
|
) |
|
else: |
|
ious = ( |
|
self.ious[imgId, catId][:, gtind] |
|
if len(self.ious[imgId, catId]) > 0 |
|
else self.ious[imgId, catId] |
|
) |
|
|
|
T = len(p.iouThrs) |
|
G = len(gt) |
|
D = len(dt) |
|
gtm = np.zeros((T, G)) |
|
dtm = np.zeros((T, D)) |
|
gtIg = np.array([g["_ignore"] for g in gt]) |
|
dtIg = np.zeros((T, D)) |
|
if np.all(gtIg) and p.iouType == "densepose": |
|
dtIg = np.logical_or(dtIg, True) |
|
|
|
if len(ious) > 0: |
|
for tind, t in enumerate(p.iouThrs): |
|
for dind, d in enumerate(dt): |
|
|
|
iou = min([t, 1 - 1e-10]) |
|
m = -1 |
|
for gind, _g in enumerate(gt): |
|
|
|
if gtm[tind, gind] > 0 and not iscrowd[gind]: |
|
continue |
|
|
|
if m > -1 and gtIg[m] == 0 and gtIg[gind] == 1: |
|
break |
|
if p.iouType == "densepose": |
|
if self._dpEvalMode == DensePoseEvalMode.GPSM: |
|
new_iou = np.sqrt(iousM[dind, gind] * ious[dind, gind]) |
|
elif self._dpEvalMode == DensePoseEvalMode.IOU: |
|
new_iou = iousM[dind, gind] |
|
elif self._dpEvalMode == DensePoseEvalMode.GPS: |
|
new_iou = ious[dind, gind] |
|
else: |
|
new_iou = ious[dind, gind] |
|
if new_iou < iou: |
|
continue |
|
if new_iou == 0.0: |
|
continue |
|
|
|
iou = new_iou |
|
m = gind |
|
|
|
if m == -1: |
|
continue |
|
dtIg[tind, dind] = gtIg[m] |
|
dtm[tind, dind] = gt[m]["id"] |
|
gtm[tind, m] = d["id"] |
|
|
|
if p.iouType == "densepose": |
|
if not len(ioubs) == 0: |
|
for dind, d in enumerate(dt): |
|
|
|
if dtm[tind, dind] == 0: |
|
ioub = 0.8 |
|
m = -1 |
|
for gind, _g in enumerate(gt): |
|
|
|
if gtm[tind, gind] > 0 and not iscrowd[gind]: |
|
continue |
|
|
|
if ioubs[dind, gind] < ioub: |
|
continue |
|
|
|
ioub = ioubs[dind, gind] |
|
m = gind |
|
|
|
if m > -1: |
|
dtIg[:, dind] = gtIg[m] |
|
if gtIg[m]: |
|
dtm[tind, dind] = gt[m]["id"] |
|
gtm[tind, m] = d["id"] |
|
|
|
a = np.array([d["area"] < aRng[0] or d["area"] > aRng[1] for d in dt]).reshape((1, len(dt))) |
|
dtIg = np.logical_or(dtIg, np.logical_and(dtm == 0, np.repeat(a, T, 0))) |
|
|
|
|
|
return { |
|
"image_id": imgId, |
|
"category_id": catId, |
|
"aRng": aRng, |
|
"maxDet": maxDet, |
|
"dtIds": [d["id"] for d in dt], |
|
"gtIds": [g["id"] for g in gt], |
|
"dtMatches": dtm, |
|
"gtMatches": gtm, |
|
"dtScores": [d["score"] for d in dt], |
|
"gtIgnore": gtIg, |
|
"dtIgnore": dtIg, |
|
} |
|
|
|
def accumulate(self, p=None): |
|
""" |
|
Accumulate per image evaluation results and store the result in self.eval |
|
:param p: input params for evaluation |
|
:return: None |
|
""" |
|
logger.info("Accumulating evaluation results...") |
|
tic = time.time() |
|
if not self.evalImgs: |
|
logger.info("Please run evaluate() first") |
|
|
|
if p is None: |
|
p = self.params |
|
p.catIds = p.catIds if p.useCats == 1 else [-1] |
|
T = len(p.iouThrs) |
|
R = len(p.recThrs) |
|
K = len(p.catIds) if p.useCats else 1 |
|
A = len(p.areaRng) |
|
M = len(p.maxDets) |
|
precision = -(np.ones((T, R, K, A, M))) |
|
recall = -(np.ones((T, K, A, M))) |
|
|
|
|
|
logger.info("Categories: {}".format(p.catIds)) |
|
_pe = self._paramsEval |
|
catIds = _pe.catIds if _pe.useCats else [-1] |
|
setK = set(catIds) |
|
setA = set(map(tuple, _pe.areaRng)) |
|
setM = set(_pe.maxDets) |
|
setI = set(_pe.imgIds) |
|
|
|
k_list = [n for n, k in enumerate(p.catIds) if k in setK] |
|
m_list = [m for n, m in enumerate(p.maxDets) if m in setM] |
|
a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA] |
|
i_list = [n for n, i in enumerate(p.imgIds) if i in setI] |
|
I0 = len(_pe.imgIds) |
|
A0 = len(_pe.areaRng) |
|
|
|
for k, k0 in enumerate(k_list): |
|
Nk = k0 * A0 * I0 |
|
for a, a0 in enumerate(a_list): |
|
Na = a0 * I0 |
|
for m, maxDet in enumerate(m_list): |
|
E = [self.evalImgs[Nk + Na + i] for i in i_list] |
|
E = [e for e in E if e is not None] |
|
if len(E) == 0: |
|
continue |
|
dtScores = np.concatenate([e["dtScores"][0:maxDet] for e in E]) |
|
|
|
|
|
|
|
inds = np.argsort(-dtScores, kind="mergesort") |
|
|
|
dtm = np.concatenate([e["dtMatches"][:, 0:maxDet] for e in E], axis=1)[:, inds] |
|
dtIg = np.concatenate([e["dtIgnore"][:, 0:maxDet] for e in E], axis=1)[:, inds] |
|
gtIg = np.concatenate([e["gtIgnore"] for e in E]) |
|
npig = np.count_nonzero(gtIg == 0) |
|
if npig == 0: |
|
continue |
|
tps = np.logical_and(dtm, np.logical_not(dtIg)) |
|
fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg)) |
|
tp_sum = np.cumsum(tps, axis=1).astype(dtype=float) |
|
fp_sum = np.cumsum(fps, axis=1).astype(dtype=float) |
|
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): |
|
tp = np.array(tp) |
|
fp = np.array(fp) |
|
nd = len(tp) |
|
rc = tp / npig |
|
pr = tp / (fp + tp + np.spacing(1)) |
|
q = np.zeros((R,)) |
|
|
|
if nd: |
|
recall[t, k, a, m] = rc[-1] |
|
else: |
|
recall[t, k, a, m] = 0 |
|
|
|
|
|
|
|
pr = pr.tolist() |
|
q = q.tolist() |
|
|
|
for i in range(nd - 1, 0, -1): |
|
if pr[i] > pr[i - 1]: |
|
pr[i - 1] = pr[i] |
|
|
|
inds = np.searchsorted(rc, p.recThrs, side="left") |
|
try: |
|
for ri, pi in enumerate(inds): |
|
q[ri] = pr[pi] |
|
except Exception: |
|
pass |
|
precision[t, :, k, a, m] = np.array(q) |
|
logger.info( |
|
"Final: max precision {}, min precision {}".format(np.max(precision), np.min(precision)) |
|
) |
|
self.eval = { |
|
"params": p, |
|
"counts": [T, R, K, A, M], |
|
"date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), |
|
"precision": precision, |
|
"recall": recall, |
|
} |
|
toc = time.time() |
|
logger.info("DONE (t={:0.2f}s).".format(toc - tic)) |
|
|
|
def summarize(self): |
|
""" |
|
Compute and display summary metrics for evaluation results. |
|
Note this function can *only* be applied on the default parameter setting |
|
""" |
|
|
|
def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100): |
|
p = self.params |
|
iStr = " {:<18} {} @[ {}={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}" |
|
titleStr = "Average Precision" if ap == 1 else "Average Recall" |
|
typeStr = "(AP)" if ap == 1 else "(AR)" |
|
measure = "IoU" |
|
if self.params.iouType == "keypoints": |
|
measure = "OKS" |
|
elif self.params.iouType == "densepose": |
|
measure = "OGPS" |
|
iouStr = ( |
|
"{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1]) |
|
if iouThr is None |
|
else "{:0.2f}".format(iouThr) |
|
) |
|
|
|
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] |
|
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] |
|
if ap == 1: |
|
|
|
s = self.eval["precision"] |
|
|
|
if iouThr is not None: |
|
t = np.where(np.abs(iouThr - p.iouThrs) < 0.001)[0] |
|
s = s[t] |
|
s = s[:, :, :, aind, mind] |
|
else: |
|
|
|
s = self.eval["recall"] |
|
if iouThr is not None: |
|
t = np.where(np.abs(iouThr - p.iouThrs) < 0.001)[0] |
|
s = s[t] |
|
s = s[:, :, aind, mind] |
|
if len(s[s > -1]) == 0: |
|
mean_s = -1 |
|
else: |
|
mean_s = np.mean(s[s > -1]) |
|
logger.info(iStr.format(titleStr, typeStr, measure, iouStr, areaRng, maxDets, mean_s)) |
|
return mean_s |
|
|
|
def _summarizeDets(): |
|
stats = np.zeros((12,)) |
|
stats[0] = _summarize(1) |
|
stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2]) |
|
stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2]) |
|
stats[3] = _summarize(1, areaRng="small", maxDets=self.params.maxDets[2]) |
|
stats[4] = _summarize(1, areaRng="medium", maxDets=self.params.maxDets[2]) |
|
stats[5] = _summarize(1, areaRng="large", maxDets=self.params.maxDets[2]) |
|
stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) |
|
stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) |
|
stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) |
|
stats[9] = _summarize(0, areaRng="small", maxDets=self.params.maxDets[2]) |
|
stats[10] = _summarize(0, areaRng="medium", maxDets=self.params.maxDets[2]) |
|
stats[11] = _summarize(0, areaRng="large", maxDets=self.params.maxDets[2]) |
|
return stats |
|
|
|
def _summarizeKps(): |
|
stats = np.zeros((10,)) |
|
stats[0] = _summarize(1, maxDets=20) |
|
stats[1] = _summarize(1, maxDets=20, iouThr=0.5) |
|
stats[2] = _summarize(1, maxDets=20, iouThr=0.75) |
|
stats[3] = _summarize(1, maxDets=20, areaRng="medium") |
|
stats[4] = _summarize(1, maxDets=20, areaRng="large") |
|
stats[5] = _summarize(0, maxDets=20) |
|
stats[6] = _summarize(0, maxDets=20, iouThr=0.5) |
|
stats[7] = _summarize(0, maxDets=20, iouThr=0.75) |
|
stats[8] = _summarize(0, maxDets=20, areaRng="medium") |
|
stats[9] = _summarize(0, maxDets=20, areaRng="large") |
|
return stats |
|
|
|
def _summarizeUvs(): |
|
stats = [_summarize(1, maxDets=self.params.maxDets[0])] |
|
min_threshold = self.params.iouThrs.min() |
|
if min_threshold <= 0.201: |
|
stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.2)] |
|
if min_threshold <= 0.301: |
|
stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.3)] |
|
if min_threshold <= 0.401: |
|
stats += [_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.4)] |
|
stats += [ |
|
_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.5), |
|
_summarize(1, maxDets=self.params.maxDets[0], iouThr=0.75), |
|
_summarize(1, maxDets=self.params.maxDets[0], areaRng="medium"), |
|
_summarize(1, maxDets=self.params.maxDets[0], areaRng="large"), |
|
_summarize(0, maxDets=self.params.maxDets[0]), |
|
_summarize(0, maxDets=self.params.maxDets[0], iouThr=0.5), |
|
_summarize(0, maxDets=self.params.maxDets[0], iouThr=0.75), |
|
_summarize(0, maxDets=self.params.maxDets[0], areaRng="medium"), |
|
_summarize(0, maxDets=self.params.maxDets[0], areaRng="large"), |
|
] |
|
return np.array(stats) |
|
|
|
def _summarizeUvsOld(): |
|
stats = np.zeros((18,)) |
|
stats[0] = _summarize(1, maxDets=self.params.maxDets[0]) |
|
stats[1] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.5) |
|
stats[2] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.55) |
|
stats[3] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.60) |
|
stats[4] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.65) |
|
stats[5] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.70) |
|
stats[6] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.75) |
|
stats[7] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.80) |
|
stats[8] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.85) |
|
stats[9] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.90) |
|
stats[10] = _summarize(1, maxDets=self.params.maxDets[0], iouThr=0.95) |
|
stats[11] = _summarize(1, maxDets=self.params.maxDets[0], areaRng="medium") |
|
stats[12] = _summarize(1, maxDets=self.params.maxDets[0], areaRng="large") |
|
stats[13] = _summarize(0, maxDets=self.params.maxDets[0]) |
|
stats[14] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.5) |
|
stats[15] = _summarize(0, maxDets=self.params.maxDets[0], iouThr=0.75) |
|
stats[16] = _summarize(0, maxDets=self.params.maxDets[0], areaRng="medium") |
|
stats[17] = _summarize(0, maxDets=self.params.maxDets[0], areaRng="large") |
|
return stats |
|
|
|
if not self.eval: |
|
raise Exception("Please run accumulate() first") |
|
iouType = self.params.iouType |
|
if iouType in ["segm", "bbox"]: |
|
summarize = _summarizeDets |
|
elif iouType in ["keypoints"]: |
|
summarize = _summarizeKps |
|
elif iouType in ["densepose"]: |
|
summarize = _summarizeUvs |
|
self.stats = summarize() |
|
|
|
def __str__(self): |
|
self.summarize() |
|
|
|
|
|
def findAllClosestVertsUV(self, U_points, V_points, Index_points): |
|
ClosestVerts = np.ones(Index_points.shape) * -1 |
|
for i in np.arange(24): |
|
|
|
if (i + 1) in Index_points: |
|
UVs = np.array( |
|
[U_points[Index_points == (i + 1)], V_points[Index_points == (i + 1)]] |
|
) |
|
Current_Part_UVs = self.Part_UVs[i] |
|
Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i] |
|
D = ssd.cdist(Current_Part_UVs.transpose(), UVs.transpose()).squeeze() |
|
ClosestVerts[Index_points == (i + 1)] = Current_Part_ClosestVertInds[ |
|
np.argmin(D, axis=0) |
|
] |
|
ClosestVertsTransformed = self.PDIST_transform[ClosestVerts.astype(int) - 1] |
|
ClosestVertsTransformed[ClosestVerts < 0] = 0 |
|
return ClosestVertsTransformed |
|
|
|
def findClosestVertsCse(self, embedding, py, px, mask, mesh_name): |
|
mesh_vertex_embeddings = self.embedder(mesh_name) |
|
pixel_embeddings = embedding[:, py, px].t().to(device="cuda") |
|
mask_vals = mask[py, px] |
|
edm = squared_euclidean_distance_matrix(pixel_embeddings, mesh_vertex_embeddings) |
|
vertex_indices = edm.argmin(dim=1).cpu() |
|
vertex_indices[mask_vals <= 0] = -1 |
|
return vertex_indices |
|
|
|
def findAllClosestVertsGT(self, gt): |
|
|
|
I_gt = np.array(gt["dp_I"]) |
|
U_gt = np.array(gt["dp_U"]) |
|
V_gt = np.array(gt["dp_V"]) |
|
|
|
|
|
|
|
ClosestVertsGT = np.ones(I_gt.shape) * -1 |
|
for i in np.arange(24): |
|
if (i + 1) in I_gt: |
|
UVs = np.array([U_gt[I_gt == (i + 1)], V_gt[I_gt == (i + 1)]]) |
|
Current_Part_UVs = self.Part_UVs[i] |
|
Current_Part_ClosestVertInds = self.Part_ClosestVertInds[i] |
|
D = ssd.cdist(Current_Part_UVs.transpose(), UVs.transpose()).squeeze() |
|
ClosestVertsGT[I_gt == (i + 1)] = Current_Part_ClosestVertInds[np.argmin(D, axis=0)] |
|
|
|
ClosestVertsGTTransformed = self.PDIST_transform[ClosestVertsGT.astype(int) - 1] |
|
ClosestVertsGTTransformed[ClosestVertsGT < 0] = 0 |
|
return ClosestVertsGT, ClosestVertsGTTransformed |
|
|
|
def getDistancesCse(self, cVertsGT, cVerts, mesh_name): |
|
geodists_vertices = torch.ones_like(cVertsGT) * float("inf") |
|
selected = (cVertsGT >= 0) * (cVerts >= 0) |
|
mesh = create_mesh(mesh_name, "cpu") |
|
geodists_vertices[selected] = mesh.geodists[cVertsGT[selected], cVerts[selected]] |
|
return geodists_vertices.numpy() |
|
|
|
def getDistancesUV(self, cVertsGT, cVerts): |
|
|
|
n = 27554 |
|
dists = [] |
|
for d in range(len(cVertsGT)): |
|
if cVertsGT[d] > 0: |
|
if cVerts[d] > 0: |
|
i = cVertsGT[d] - 1 |
|
j = cVerts[d] - 1 |
|
if j == i: |
|
dists.append(0) |
|
elif j > i: |
|
ccc = i |
|
i = j |
|
j = ccc |
|
i = n - i - 1 |
|
j = n - j - 1 |
|
k = (n * (n - 1) / 2) - (n - i) * ((n - i) - 1) / 2 + j - i - 1 |
|
k = (n * n - n) / 2 - k - 1 |
|
dists.append(self.Pdist_matrix[int(k)][0]) |
|
else: |
|
i = n - i - 1 |
|
j = n - j - 1 |
|
k = (n * (n - 1) / 2) - (n - i) * ((n - i) - 1) / 2 + j - i - 1 |
|
k = (n * n - n) / 2 - k - 1 |
|
dists.append(self.Pdist_matrix[int(k)][0]) |
|
else: |
|
dists.append(np.inf) |
|
return np.atleast_1d(np.array(dists).squeeze()) |
|
|
|
|
|
class Params: |
|
""" |
|
Params for coco evaluation api |
|
""" |
|
|
|
def setDetParams(self): |
|
self.imgIds = [] |
|
self.catIds = [] |
|
|
|
self.iouThrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True) |
|
self.recThrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True) |
|
self.maxDets = [1, 10, 100] |
|
self.areaRng = [ |
|
[0**2, 1e5**2], |
|
[0**2, 32**2], |
|
[32**2, 96**2], |
|
[96**2, 1e5**2], |
|
] |
|
self.areaRngLbl = ["all", "small", "medium", "large"] |
|
self.useCats = 1 |
|
|
|
def setKpParams(self): |
|
self.imgIds = [] |
|
self.catIds = [] |
|
|
|
self.iouThrs = np.linspace(0.5, 0.95, np.round((0.95 - 0.5) / 0.05) + 1, endpoint=True) |
|
self.recThrs = np.linspace(0.0, 1.00, np.round((1.00 - 0.0) / 0.01) + 1, endpoint=True) |
|
self.maxDets = [20] |
|
self.areaRng = [[0**2, 1e5**2], [32**2, 96**2], [96**2, 1e5**2]] |
|
self.areaRngLbl = ["all", "medium", "large"] |
|
self.useCats = 1 |
|
|
|
def setUvParams(self): |
|
self.imgIds = [] |
|
self.catIds = [] |
|
self.iouThrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True) |
|
self.recThrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True) |
|
self.maxDets = [20] |
|
self.areaRng = [[0**2, 1e5**2], [32**2, 96**2], [96**2, 1e5**2]] |
|
self.areaRngLbl = ["all", "medium", "large"] |
|
self.useCats = 1 |
|
|
|
def __init__(self, iouType="segm"): |
|
if iouType == "segm" or iouType == "bbox": |
|
self.setDetParams() |
|
elif iouType == "keypoints": |
|
self.setKpParams() |
|
elif iouType == "densepose": |
|
self.setUvParams() |
|
else: |
|
raise Exception("iouType not supported") |
|
self.iouType = iouType |
|
|
|
self.useSegm = None |
|
|