|
|
|
|
|
|
|
import csv |
|
import logging |
|
import numpy as np |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
import av |
|
import torch |
|
from torch.utils.data.dataset import Dataset |
|
|
|
from detectron2.utils.file_io import PathManager |
|
|
|
from ..utils import maybe_prepend_base_path |
|
from .frame_selector import FrameSelector, FrameTsList |
|
|
|
FrameList = List[av.frame.Frame] |
|
FrameTransform = Callable[[torch.Tensor], torch.Tensor] |
|
|
|
|
|
def list_keyframes(video_fpath: str, video_stream_idx: int = 0) -> FrameTsList: |
|
""" |
|
Traverses all keyframes of a video file. Returns a list of keyframe |
|
timestamps. Timestamps are counts in timebase units. |
|
|
|
Args: |
|
video_fpath (str): Video file path |
|
video_stream_idx (int): Video stream index (default: 0) |
|
Returns: |
|
List[int]: list of keyframe timestaps (timestamp is a count in timebase |
|
units) |
|
""" |
|
try: |
|
with PathManager.open(video_fpath, "rb") as io: |
|
container = av.open(io, mode="r") |
|
stream = container.streams.video[video_stream_idx] |
|
keyframes = [] |
|
pts = -1 |
|
|
|
|
|
|
|
tolerance_backward_seeks = 2 |
|
while True: |
|
try: |
|
container.seek(pts + 1, backward=False, any_frame=False, stream=stream) |
|
except av.AVError as e: |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
logger.debug( |
|
f"List keyframes: Error seeking video file {video_fpath}, " |
|
f"video stream {video_stream_idx}, pts {pts + 1}, AV error: {e}" |
|
) |
|
return keyframes |
|
except OSError as e: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
f"List keyframes: Error seeking video file {video_fpath}, " |
|
f"video stream {video_stream_idx}, pts {pts + 1}, OS error: {e}" |
|
) |
|
return [] |
|
packet = next(container.demux(video=video_stream_idx)) |
|
if packet.pts is not None and packet.pts <= pts: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
f"Video file {video_fpath}, stream {video_stream_idx}: " |
|
f"bad seek for packet {pts + 1} (got packet {packet.pts}), " |
|
f"tolerance {tolerance_backward_seeks}." |
|
) |
|
tolerance_backward_seeks -= 1 |
|
if tolerance_backward_seeks == 0: |
|
return [] |
|
pts += 1 |
|
continue |
|
tolerance_backward_seeks = 2 |
|
pts = packet.pts |
|
if pts is None: |
|
return keyframes |
|
if packet.is_keyframe: |
|
keyframes.append(pts) |
|
return keyframes |
|
except OSError as e: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
f"List keyframes: Error opening video file container {video_fpath}, " f"OS error: {e}" |
|
) |
|
except RuntimeError as e: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
f"List keyframes: Error opening video file container {video_fpath}, " |
|
f"Runtime error: {e}" |
|
) |
|
return [] |
|
|
|
|
|
def read_keyframes( |
|
video_fpath: str, keyframes: FrameTsList, video_stream_idx: int = 0 |
|
) -> FrameList: |
|
""" |
|
Reads keyframe data from a video file. |
|
|
|
Args: |
|
video_fpath (str): Video file path |
|
keyframes (List[int]): List of keyframe timestamps (as counts in |
|
timebase units to be used in container seek operations) |
|
video_stream_idx (int): Video stream index (default: 0) |
|
Returns: |
|
List[Frame]: list of frames that correspond to the specified timestamps |
|
""" |
|
try: |
|
with PathManager.open(video_fpath, "rb") as io: |
|
container = av.open(io) |
|
stream = container.streams.video[video_stream_idx] |
|
frames = [] |
|
for pts in keyframes: |
|
try: |
|
container.seek(pts, any_frame=False, stream=stream) |
|
frame = next(container.decode(video=0)) |
|
frames.append(frame) |
|
except av.AVError as e: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
f"Read keyframes: Error seeking video file {video_fpath}, " |
|
f"video stream {video_stream_idx}, pts {pts}, AV error: {e}" |
|
) |
|
container.close() |
|
return frames |
|
except OSError as e: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
f"Read keyframes: Error seeking video file {video_fpath}, " |
|
f"video stream {video_stream_idx}, pts {pts}, OS error: {e}" |
|
) |
|
container.close() |
|
return frames |
|
except StopIteration: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
f"Read keyframes: Error decoding frame from {video_fpath}, " |
|
f"video stream {video_stream_idx}, pts {pts}" |
|
) |
|
container.close() |
|
return frames |
|
|
|
container.close() |
|
return frames |
|
except OSError as e: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
f"Read keyframes: Error opening video file container {video_fpath}, OS error: {e}" |
|
) |
|
except RuntimeError as e: |
|
logger = logging.getLogger(__name__) |
|
logger.warning( |
|
f"Read keyframes: Error opening video file container {video_fpath}, Runtime error: {e}" |
|
) |
|
return [] |
|
|
|
|
|
def video_list_from_file(video_list_fpath: str, base_path: Optional[str] = None): |
|
""" |
|
Create a list of paths to video files from a text file. |
|
|
|
Args: |
|
video_list_fpath (str): path to a plain text file with the list of videos |
|
base_path (str): base path for entries from the video list (default: None) |
|
""" |
|
video_list = [] |
|
with PathManager.open(video_list_fpath, "r") as io: |
|
for line in io: |
|
video_list.append(maybe_prepend_base_path(base_path, str(line.strip()))) |
|
return video_list |
|
|
|
|
|
def read_keyframe_helper_data(fpath: str): |
|
""" |
|
Read keyframe data from a file in CSV format: the header should contain |
|
"video_id" and "keyframes" fields. Value specifications are: |
|
video_id: int |
|
keyframes: list(int) |
|
Example of contents: |
|
video_id,keyframes |
|
2,"[1,11,21,31,41,51,61,71,81]" |
|
|
|
Args: |
|
fpath (str): File containing keyframe data |
|
|
|
Return: |
|
video_id_to_keyframes (dict: int -> list(int)): for a given video ID it |
|
contains a list of keyframes for that video |
|
""" |
|
video_id_to_keyframes = {} |
|
try: |
|
with PathManager.open(fpath, "r") as io: |
|
csv_reader = csv.reader(io) |
|
header = next(csv_reader) |
|
video_id_idx = header.index("video_id") |
|
keyframes_idx = header.index("keyframes") |
|
for row in csv_reader: |
|
video_id = int(row[video_id_idx]) |
|
assert ( |
|
video_id not in video_id_to_keyframes |
|
), f"Duplicate keyframes entry for video {fpath}" |
|
video_id_to_keyframes[video_id] = ( |
|
[int(v) for v in row[keyframes_idx][1:-1].split(",")] |
|
if len(row[keyframes_idx]) > 2 |
|
else [] |
|
) |
|
except Exception as e: |
|
logger = logging.getLogger(__name__) |
|
logger.warning(f"Error reading keyframe helper data from {fpath}: {e}") |
|
return video_id_to_keyframes |
|
|
|
|
|
class VideoKeyframeDataset(Dataset): |
|
""" |
|
Dataset that provides keyframes for a set of videos. |
|
""" |
|
|
|
_EMPTY_FRAMES = torch.empty((0, 3, 1, 1)) |
|
|
|
def __init__( |
|
self, |
|
video_list: List[str], |
|
category_list: Union[str, List[str], None] = None, |
|
frame_selector: Optional[FrameSelector] = None, |
|
transform: Optional[FrameTransform] = None, |
|
keyframe_helper_fpath: Optional[str] = None, |
|
): |
|
""" |
|
Dataset constructor |
|
|
|
Args: |
|
video_list (List[str]): list of paths to video files |
|
category_list (Union[str, List[str], None]): list of animal categories for each |
|
video file. If it is a string, or None, this applies to all videos |
|
frame_selector (Callable: KeyFrameList -> KeyFrameList): |
|
selects keyframes to process, keyframes are given by |
|
packet timestamps in timebase counts. If None, all keyframes |
|
are selected (default: None) |
|
transform (Callable: torch.Tensor -> torch.Tensor): |
|
transforms a batch of RGB images (tensors of size [B, 3, H, W]), |
|
returns a tensor of the same size. If None, no transform is |
|
applied (default: None) |
|
|
|
""" |
|
if type(category_list) == list: |
|
self.category_list = category_list |
|
else: |
|
self.category_list = [category_list] * len(video_list) |
|
assert len(video_list) == len( |
|
self.category_list |
|
), "length of video and category lists must be equal" |
|
self.video_list = video_list |
|
self.frame_selector = frame_selector |
|
self.transform = transform |
|
self.keyframe_helper_data = ( |
|
read_keyframe_helper_data(keyframe_helper_fpath) |
|
if keyframe_helper_fpath is not None |
|
else None |
|
) |
|
|
|
def __getitem__(self, idx: int) -> Dict[str, Any]: |
|
""" |
|
Gets selected keyframes from a given video |
|
|
|
Args: |
|
idx (int): video index in the video list file |
|
Returns: |
|
A dictionary containing two keys: |
|
images (torch.Tensor): tensor of size [N, H, W, 3] or of size |
|
defined by the transform that contains keyframes data |
|
categories (List[str]): categories of the frames |
|
""" |
|
categories = [self.category_list[idx]] |
|
fpath = self.video_list[idx] |
|
keyframes = ( |
|
list_keyframes(fpath) |
|
if self.keyframe_helper_data is None or idx not in self.keyframe_helper_data |
|
else self.keyframe_helper_data[idx] |
|
) |
|
transform = self.transform |
|
frame_selector = self.frame_selector |
|
if not keyframes: |
|
return {"images": self._EMPTY_FRAMES, "categories": []} |
|
if frame_selector is not None: |
|
keyframes = frame_selector(keyframes) |
|
frames = read_keyframes(fpath, keyframes) |
|
if not frames: |
|
return {"images": self._EMPTY_FRAMES, "categories": []} |
|
frames = np.stack([frame.to_rgb().to_ndarray() for frame in frames]) |
|
frames = torch.as_tensor(frames, device=torch.device("cpu")) |
|
frames = frames[..., [2, 1, 0]] |
|
frames = frames.permute(0, 3, 1, 2).float() |
|
if transform is not None: |
|
frames = transform(frames) |
|
return {"images": frames, "categories": categories} |
|
|
|
def __len__(self): |
|
return len(self.video_list) |
|
|