|
|
|
from dataclasses import fields |
|
import torch |
|
|
|
from densepose.structures import DensePoseChartPredictorOutput, DensePoseTransformData |
|
|
|
|
|
def densepose_chart_predictor_output_hflip( |
|
densepose_predictor_output: DensePoseChartPredictorOutput, |
|
transform_data: DensePoseTransformData, |
|
) -> DensePoseChartPredictorOutput: |
|
""" |
|
Change to take into account a Horizontal flip. |
|
""" |
|
if len(densepose_predictor_output) > 0: |
|
|
|
PredictorOutput = type(densepose_predictor_output) |
|
output_dict = {} |
|
|
|
for field in fields(densepose_predictor_output): |
|
field_value = getattr(densepose_predictor_output, field.name) |
|
|
|
if isinstance(field_value, torch.Tensor): |
|
setattr(densepose_predictor_output, field.name, torch.flip(field_value, [3])) |
|
|
|
densepose_predictor_output = _flip_iuv_semantics_tensor( |
|
densepose_predictor_output, transform_data |
|
) |
|
densepose_predictor_output = _flip_segm_semantics_tensor( |
|
densepose_predictor_output, transform_data |
|
) |
|
|
|
for field in fields(densepose_predictor_output): |
|
output_dict[field.name] = getattr(densepose_predictor_output, field.name) |
|
|
|
return PredictorOutput(**output_dict) |
|
else: |
|
return densepose_predictor_output |
|
|
|
|
|
def _flip_iuv_semantics_tensor( |
|
densepose_predictor_output: DensePoseChartPredictorOutput, |
|
dp_transform_data: DensePoseTransformData, |
|
) -> DensePoseChartPredictorOutput: |
|
point_label_symmetries = dp_transform_data.point_label_symmetries |
|
uv_symmetries = dp_transform_data.uv_symmetries |
|
|
|
N, C, H, W = densepose_predictor_output.u.shape |
|
u_loc = (densepose_predictor_output.u[:, 1:, :, :].clamp(0, 1) * 255).long() |
|
v_loc = (densepose_predictor_output.v[:, 1:, :, :].clamp(0, 1) * 255).long() |
|
Iindex = torch.arange(C - 1, device=densepose_predictor_output.u.device)[ |
|
None, :, None, None |
|
].expand(N, C - 1, H, W) |
|
densepose_predictor_output.u[:, 1:, :, :] = uv_symmetries["U_transforms"][Iindex, v_loc, u_loc] |
|
densepose_predictor_output.v[:, 1:, :, :] = uv_symmetries["V_transforms"][Iindex, v_loc, u_loc] |
|
|
|
for el in ["fine_segm", "u", "v"]: |
|
densepose_predictor_output.__dict__[el] = densepose_predictor_output.__dict__[el][ |
|
:, point_label_symmetries, :, : |
|
] |
|
return densepose_predictor_output |
|
|
|
|
|
def _flip_segm_semantics_tensor( |
|
densepose_predictor_output: DensePoseChartPredictorOutput, dp_transform_data |
|
): |
|
if densepose_predictor_output.coarse_segm.shape[1] > 2: |
|
densepose_predictor_output.coarse_segm = densepose_predictor_output.coarse_segm[ |
|
:, dp_transform_data.mask_label_symmetries, :, : |
|
] |
|
return densepose_predictor_output |
|
|