|
|
|
import torch |
|
from torch.nn import functional as F |
|
|
|
from detectron2.structures import Instances, ROIMasks |
|
|
|
|
|
|
|
def detector_postprocess( |
|
results: Instances, output_height: int, output_width: int, mask_threshold: float = 0.5 |
|
): |
|
""" |
|
Resize the output instances. |
|
The input images are often resized when entering an object detector. |
|
As a result, we often need the outputs of the detector in a different |
|
resolution from its inputs. |
|
|
|
This function will resize the raw outputs of an R-CNN detector |
|
to produce outputs according to the desired output resolution. |
|
|
|
Args: |
|
results (Instances): the raw outputs from the detector. |
|
`results.image_size` contains the input image resolution the detector sees. |
|
This object might be modified in-place. |
|
output_height, output_width: the desired output resolution. |
|
Returns: |
|
Instances: the resized output from the model, based on the output resolution |
|
""" |
|
if isinstance(output_width, torch.Tensor): |
|
|
|
|
|
|
|
output_width_tmp = output_width.float() |
|
output_height_tmp = output_height.float() |
|
new_size = torch.stack([output_height, output_width]) |
|
else: |
|
new_size = (output_height, output_width) |
|
output_width_tmp = output_width |
|
output_height_tmp = output_height |
|
|
|
scale_x, scale_y = ( |
|
output_width_tmp / results.image_size[1], |
|
output_height_tmp / results.image_size[0], |
|
) |
|
results = Instances(new_size, **results.get_fields()) |
|
|
|
if results.has("pred_boxes"): |
|
output_boxes = results.pred_boxes |
|
elif results.has("proposal_boxes"): |
|
output_boxes = results.proposal_boxes |
|
else: |
|
output_boxes = None |
|
assert output_boxes is not None, "Predictions must contain boxes!" |
|
|
|
output_boxes.scale(scale_x, scale_y) |
|
output_boxes.clip(results.image_size) |
|
|
|
results = results[output_boxes.nonempty()] |
|
|
|
if results.has("pred_masks"): |
|
if isinstance(results.pred_masks, ROIMasks): |
|
roi_masks = results.pred_masks |
|
else: |
|
|
|
roi_masks = ROIMasks(results.pred_masks[:, 0, :, :]) |
|
results.pred_masks = roi_masks.to_bitmasks( |
|
results.pred_boxes, output_height, output_width, mask_threshold |
|
).tensor |
|
|
|
if results.has("pred_keypoints"): |
|
results.pred_keypoints[:, :, 0] *= scale_x |
|
results.pred_keypoints[:, :, 1] *= scale_y |
|
|
|
return results |
|
|
|
|
|
def sem_seg_postprocess(result, img_size, output_height, output_width): |
|
""" |
|
Return semantic segmentation predictions in the original resolution. |
|
|
|
The input images are often resized when entering semantic segmentor. Moreover, in same |
|
cases, they also padded inside segmentor to be divisible by maximum network stride. |
|
As a result, we often need the predictions of the segmentor in a different |
|
resolution from its inputs. |
|
|
|
Args: |
|
result (Tensor): semantic segmentation prediction logits. A tensor of shape (C, H, W), |
|
where C is the number of classes, and H, W are the height and width of the prediction. |
|
img_size (tuple): image size that segmentor is taking as input. |
|
output_height, output_width: the desired output resolution. |
|
|
|
Returns: |
|
semantic segmentation prediction (Tensor): A tensor of the shape |
|
(C, output_height, output_width) that contains per-pixel soft predictions. |
|
""" |
|
result = result[:, : img_size[0], : img_size[1]].expand(1, -1, -1, -1) |
|
result = F.interpolate( |
|
result, size=(output_height, output_width), mode="bilinear", align_corners=False |
|
)[0] |
|
return result |
|
|