Spaces:
kadirnar
/
Runtime error

IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
13.4 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import functools
import json
import logging
import multiprocessing as mp
import os
from itertools import chain
import numpy as np
import pycocotools.mask as mask_util
from detectron2.structures import BoxMode
from detectron2.utils.comm import get_world_size
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import setup_logger
from PIL import Image
try:
import cv2 # noqa
except ImportError:
# OpenCV is an optional dependency at the moment
pass
logger = logging.getLogger(__name__)
def _get_cityscapes_files(image_dir, gt_dir):
files = []
# scan through the directory
cities = PathManager.ls(image_dir)
logger.info(f"{len(cities)} cities found in '{image_dir}'.")
for city in cities:
city_img_dir = os.path.join(image_dir, city)
city_gt_dir = os.path.join(gt_dir, city)
for basename in PathManager.ls(city_img_dir):
image_file = os.path.join(city_img_dir, basename)
suffix = "leftImg8bit.png"
assert basename.endswith(suffix), basename
basename = basename[: -len(suffix)]
instance_file = os.path.join(
city_gt_dir, basename + "gtFine_instanceIds.png"
)
label_file = os.path.join(city_gt_dir, basename + "gtFine_labelIds.png")
json_file = os.path.join(city_gt_dir, basename + "gtFine_polygons.json")
files.append((image_file, instance_file, label_file, json_file))
assert len(files), "No images found in {}".format(image_dir)
for f in files[0]:
assert PathManager.isfile(f), f
return files
def load_cityscapes_instances(image_dir, gt_dir, from_json=True, to_polygons=True):
"""
Args:
image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train".
gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train".
from_json (bool): whether to read annotations from the raw json file or the png files.
to_polygons (bool): whether to represent the segmentation as polygons
(COCO's format) instead of masks (cityscapes's format).
Returns:
list[dict]: a list of dicts in Detectron2 standard format. (See
`Using Custom Datasets </tutorials/datasets.html>`_ )
"""
if from_json:
assert to_polygons, (
"Cityscapes's json annotations are in polygon format. "
"Converting to mask format is not supported now."
)
files = _get_cityscapes_files(image_dir, gt_dir)
logger.info("Preprocessing cityscapes annotations ...")
# This is still not fast: all workers will execute duplicate works and will
# take up to 10m on a 8GPU server.
pool = mp.Pool(processes=max(mp.cpu_count() // get_world_size() // 2, 4))
ret = pool.map(
functools.partial(
_cityscapes_files_to_dict, from_json=from_json, to_polygons=to_polygons
),
files,
)
logger.info("Loaded {} images from {}".format(len(ret), image_dir))
# Map cityscape ids to contiguous ids
from cityscapesscripts.helpers.labels import labels
labels = [l for l in labels if l.hasInstances and not l.ignoreInEval]
dataset_id_to_contiguous_id = {l.id: idx for idx, l in enumerate(labels)}
for dict_per_image in ret:
for anno in dict_per_image["annotations"]:
anno["category_id"] = dataset_id_to_contiguous_id[anno["category_id"]]
return ret
def load_cityscapes_semantic(image_dir, gt_dir):
"""
Args:
image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train".
gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train".
Returns:
list[dict]: a list of dict, each has "file_name" and
"sem_seg_file_name".
"""
ret = []
# gt_dir is small and contain many small files. make sense to fetch to local first
gt_dir = PathManager.get_local_path(gt_dir)
for image_file, _, label_file, json_file in _get_cityscapes_files(
image_dir, gt_dir
):
label_file = label_file.replace("labelIds", "labelTrainIds")
with PathManager.open(json_file, "r") as f:
jsonobj = json.load(f)
ret.append(
{
"file_name": image_file,
"sem_seg_file_name": label_file,
"height": jsonobj["imgHeight"],
"width": jsonobj["imgWidth"],
}
)
assert len(ret), f"No images found in {image_dir}!"
assert PathManager.isfile(
ret[0]["sem_seg_file_name"]
), "Please generate labelTrainIds.png with cityscapesscripts/preparation/createTrainIdLabelImgs.py" # noqa
return ret
def _cityscapes_files_to_dict(files, from_json, to_polygons):
"""
Parse cityscapes annotation files to a instance segmentation dataset dict.
Args:
files (tuple): consists of (image_file, instance_id_file, label_id_file, json_file)
from_json (bool): whether to read annotations from the raw json file or the png files.
to_polygons (bool): whether to represent the segmentation as polygons
(COCO's format) instead of masks (cityscapes's format).
Returns:
A dict in Detectron2 Dataset format.
"""
from cityscapesscripts.helpers.labels import id2label, name2label
image_file, instance_id_file, _, json_file = files
annos = []
if from_json:
from shapely.geometry import MultiPolygon, Polygon
with PathManager.open(json_file, "r") as f:
jsonobj = json.load(f)
ret = {
"file_name": image_file,
"image_id": os.path.basename(image_file),
"height": jsonobj["imgHeight"],
"width": jsonobj["imgWidth"],
}
# `polygons_union` contains the union of all valid polygons.
polygons_union = Polygon()
# CityscapesScripts draw the polygons in sequential order
# and each polygon *overwrites* existing ones. See
# (https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/json2instanceImg.py) # noqa
# We use reverse order, and each polygon *avoids* early ones.
# This will resolve the ploygon overlaps in the same way as CityscapesScripts.
for obj in jsonobj["objects"][::-1]:
if "deleted" in obj: # cityscapes data format specific
continue
label_name = obj["label"]
try:
label = name2label[label_name]
except KeyError:
if label_name.endswith("group"): # crowd area
label = name2label[label_name[: -len("group")]]
else:
raise
if label.id < 0: # cityscapes data format
continue
# Cityscapes's raw annotations uses integer coordinates
# Therefore +0.5 here
poly_coord = np.asarray(obj["polygon"], dtype="f4") + 0.5
# CityscapesScript uses PIL.ImageDraw.polygon to rasterize
# polygons for evaluation. This function operates in integer space
# and draws each pixel whose center falls into the polygon.
# Therefore it draws a polygon which is 0.5 "fatter" in expectation.
# We therefore dilate the input polygon by 0.5 as our input.
poly = Polygon(poly_coord).buffer(0.5, resolution=4)
if not label.hasInstances or label.ignoreInEval:
# even if we won't store the polygon it still contributes to overlaps resolution
polygons_union = polygons_union.union(poly)
continue
# Take non-overlapping part of the polygon
poly_wo_overlaps = poly.difference(polygons_union)
if poly_wo_overlaps.is_empty:
continue
polygons_union = polygons_union.union(poly)
anno = {}
anno["iscrowd"] = label_name.endswith("group")
anno["category_id"] = label.id
if isinstance(poly_wo_overlaps, Polygon):
poly_list = [poly_wo_overlaps]
elif isinstance(poly_wo_overlaps, MultiPolygon):
poly_list = poly_wo_overlaps.geoms
else:
raise NotImplementedError(
"Unknown geometric structure {}".format(poly_wo_overlaps)
)
poly_coord = []
for poly_el in poly_list:
# COCO API can work only with exterior boundaries now, hence we store only them.
# TODO: store both exterior and interior boundaries once other parts of the
# codebase support holes in polygons.
poly_coord.append(list(chain(*poly_el.exterior.coords)))
anno["segmentation"] = poly_coord
(xmin, ymin, xmax, ymax) = poly_wo_overlaps.bounds
anno["bbox"] = (xmin, ymin, xmax, ymax)
anno["bbox_mode"] = BoxMode.XYXY_ABS
annos.append(anno)
else:
# See also the official annotation parsing scripts at
# https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/instances2dict.py # noqa
with PathManager.open(instance_id_file, "rb") as f:
inst_image = np.asarray(Image.open(f), order="F")
# ids < 24 are stuff labels (filtering them first is about 5% faster)
flattened_ids = np.unique(inst_image[inst_image >= 24])
ret = {
"file_name": image_file,
"image_id": os.path.basename(image_file),
"height": inst_image.shape[0],
"width": inst_image.shape[1],
}
for instance_id in flattened_ids:
# For non-crowd annotations, instance_id // 1000 is the label_id
# Crowd annotations have <1000 instance ids
label_id = instance_id // 1000 if instance_id >= 1000 else instance_id
label = id2label[label_id]
if not label.hasInstances or label.ignoreInEval:
continue
anno = {}
anno["iscrowd"] = instance_id < 1000
anno["category_id"] = label.id
mask = np.asarray(inst_image == instance_id, dtype=np.uint8, order="F")
inds = np.nonzero(mask)
ymin, ymax = inds[0].min(), inds[0].max()
xmin, xmax = inds[1].min(), inds[1].max()
anno["bbox"] = (xmin, ymin, xmax, ymax)
if xmax <= xmin or ymax <= ymin:
continue
anno["bbox_mode"] = BoxMode.XYXY_ABS
if to_polygons:
# This conversion comes from D4809743 and D5171122,
# when Mask-RCNN was first developed.
contours = cv2.findContours(
mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)[-2]
polygons = [c.reshape(-1).tolist() for c in contours if len(c) >= 3]
# opencv's can produce invalid polygons
if len(polygons) == 0:
continue
anno["segmentation"] = polygons
else:
anno["segmentation"] = mask_util.encode(mask[:, :, None])[0]
annos.append(anno)
ret["annotations"] = annos
return ret
def main() -> None:
global logger, labels
"""
Test the cityscapes dataset loader.
Usage:
python -m detectron2.data.datasets.cityscapes \
cityscapes/leftImg8bit/train cityscapes/gtFine/train
"""
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("image_dir")
parser.add_argument("gt_dir")
parser.add_argument("--type", choices=["instance", "semantic"], default="instance")
args = parser.parse_args()
from cityscapesscripts.helpers.labels import labels
from detectron2.data.catalog import Metadata
from detectron2.utils.visualizer import Visualizer
logger = setup_logger(name=__name__)
dirname = "cityscapes-data-vis"
os.makedirs(dirname, exist_ok=True)
if args.type == "instance":
dicts = load_cityscapes_instances(
args.image_dir, args.gt_dir, from_json=True, to_polygons=True
)
logger.info("Done loading {} samples.".format(len(dicts)))
thing_classes = [
k.name for k in labels if k.hasInstances and not k.ignoreInEval
]
meta = Metadata().set(thing_classes=thing_classes)
else:
dicts = load_cityscapes_semantic(args.image_dir, args.gt_dir)
logger.info("Done loading {} samples.".format(len(dicts)))
stuff_classes = [k.name for k in labels if k.trainId != 255]
stuff_colors = [k.color for k in labels if k.trainId != 255]
meta = Metadata().set(stuff_classes=stuff_classes, stuff_colors=stuff_colors)
for d in dicts:
img = np.array(Image.open(PathManager.open(d["file_name"], "rb")))
visualizer = Visualizer(img, metadata=meta)
vis = visualizer.draw_dataset_dict(d)
# cv2.imshow("a", vis.get_image()[:, :, ::-1])
# cv2.waitKey()
fpath = os.path.join(dirname, os.path.basename(d["file_name"]))
vis.save(fpath)
if __name__ == "__main__":
main() # pragma: no cover