|
|
|
import collections |
|
from dataclasses import dataclass |
|
from typing import Callable, List, Optional, Tuple |
|
import torch |
|
from torch import nn |
|
|
|
from detectron2.structures import Boxes, Instances, ROIMasks |
|
from detectron2.utils.registry import _convert_target_to_string, locate |
|
|
|
from .torchscript_patch import patch_builtin_len |
|
|
|
|
|
@dataclass |
|
class Schema: |
|
""" |
|
A Schema defines how to flatten a possibly hierarchical object into tuple of |
|
primitive objects, so it can be used as inputs/outputs of PyTorch's tracing. |
|
|
|
PyTorch does not support tracing a function that produces rich output |
|
structures (e.g. dict, Instances, Boxes). To trace such a function, we |
|
flatten the rich object into tuple of tensors, and return this tuple of tensors |
|
instead. Meanwhile, we also need to know how to "rebuild" the original object |
|
from the flattened results, so we can evaluate the flattened results. |
|
A Schema defines how to flatten an object, and while flattening it, it records |
|
necessary schemas so that the object can be rebuilt using the flattened outputs. |
|
|
|
The flattened object and the schema object is returned by ``.flatten`` classmethod. |
|
Then the original object can be rebuilt with the ``__call__`` method of schema. |
|
|
|
A Schema is a dataclass that can be serialized easily. |
|
""" |
|
|
|
|
|
|
|
@classmethod |
|
def flatten(cls, obj): |
|
raise NotImplementedError |
|
|
|
def __call__(self, values): |
|
raise NotImplementedError |
|
|
|
@staticmethod |
|
def _concat(values): |
|
ret = () |
|
sizes = [] |
|
for v in values: |
|
assert isinstance(v, tuple), "Flattened results must be a tuple" |
|
ret = ret + v |
|
sizes.append(len(v)) |
|
return ret, sizes |
|
|
|
@staticmethod |
|
def _split(values, sizes): |
|
if len(sizes): |
|
expected_len = sum(sizes) |
|
assert ( |
|
len(values) == expected_len |
|
), f"Values has length {len(values)} but expect length {expected_len}." |
|
ret = [] |
|
for k in range(len(sizes)): |
|
begin, end = sum(sizes[:k]), sum(sizes[: k + 1]) |
|
ret.append(values[begin:end]) |
|
return ret |
|
|
|
|
|
@dataclass |
|
class ListSchema(Schema): |
|
schemas: List[Schema] |
|
sizes: List[int] |
|
|
|
def __call__(self, values): |
|
values = self._split(values, self.sizes) |
|
if len(values) != len(self.schemas): |
|
raise ValueError( |
|
f"Values has length {len(values)} but schemas " f"has length {len(self.schemas)}!" |
|
) |
|
values = [m(v) for m, v in zip(self.schemas, values)] |
|
return list(values) |
|
|
|
@classmethod |
|
def flatten(cls, obj): |
|
res = [flatten_to_tuple(k) for k in obj] |
|
values, sizes = cls._concat([k[0] for k in res]) |
|
return values, cls([k[1] for k in res], sizes) |
|
|
|
|
|
@dataclass |
|
class TupleSchema(ListSchema): |
|
def __call__(self, values): |
|
return tuple(super().__call__(values)) |
|
|
|
|
|
@dataclass |
|
class IdentitySchema(Schema): |
|
def __call__(self, values): |
|
return values[0] |
|
|
|
@classmethod |
|
def flatten(cls, obj): |
|
return (obj,), cls() |
|
|
|
|
|
@dataclass |
|
class DictSchema(ListSchema): |
|
keys: List[str] |
|
|
|
def __call__(self, values): |
|
values = super().__call__(values) |
|
return dict(zip(self.keys, values)) |
|
|
|
@classmethod |
|
def flatten(cls, obj): |
|
for k in obj.keys(): |
|
if not isinstance(k, str): |
|
raise KeyError("Only support flattening dictionaries if keys are str.") |
|
keys = sorted(obj.keys()) |
|
values = [obj[k] for k in keys] |
|
ret, schema = ListSchema.flatten(values) |
|
return ret, cls(schema.schemas, schema.sizes, keys) |
|
|
|
|
|
@dataclass |
|
class InstancesSchema(DictSchema): |
|
def __call__(self, values): |
|
image_size, fields = values[-1], values[:-1] |
|
fields = super().__call__(fields) |
|
return Instances(image_size, **fields) |
|
|
|
@classmethod |
|
def flatten(cls, obj): |
|
ret, schema = super().flatten(obj.get_fields()) |
|
size = obj.image_size |
|
if not isinstance(size, torch.Tensor): |
|
size = torch.tensor(size) |
|
return ret + (size,), schema |
|
|
|
|
|
@dataclass |
|
class TensorWrapSchema(Schema): |
|
""" |
|
For classes that are simple wrapper of tensors, e.g. |
|
Boxes, RotatedBoxes, BitMasks |
|
""" |
|
|
|
class_name: str |
|
|
|
def __call__(self, values): |
|
return locate(self.class_name)(values[0]) |
|
|
|
@classmethod |
|
def flatten(cls, obj): |
|
return (obj.tensor,), cls(_convert_target_to_string(type(obj))) |
|
|
|
|
|
|
|
|
|
def flatten_to_tuple(obj): |
|
""" |
|
Flatten an object so it can be used for PyTorch tracing. |
|
Also returns how to rebuild the original object from the flattened outputs. |
|
|
|
Returns: |
|
res (tuple): the flattened results that can be used as tracing outputs |
|
schema: an object with a ``__call__`` method such that ``schema(res) == obj``. |
|
It is a pure dataclass that can be serialized. |
|
""" |
|
schemas = [ |
|
((str, bytes), IdentitySchema), |
|
(list, ListSchema), |
|
(tuple, TupleSchema), |
|
(collections.abc.Mapping, DictSchema), |
|
(Instances, InstancesSchema), |
|
((Boxes, ROIMasks), TensorWrapSchema), |
|
] |
|
for klass, schema in schemas: |
|
if isinstance(obj, klass): |
|
F = schema |
|
break |
|
else: |
|
F = IdentitySchema |
|
|
|
return F.flatten(obj) |
|
|
|
|
|
class TracingAdapter(nn.Module): |
|
""" |
|
A model may take rich input/output format (e.g. dict or custom classes), |
|
but `torch.jit.trace` requires tuple of tensors as input/output. |
|
This adapter flattens input/output format of a model so it becomes traceable. |
|
|
|
It also records the necessary schema to rebuild model's inputs/outputs from flattened |
|
inputs/outputs. |
|
|
|
Example: |
|
:: |
|
outputs = model(inputs) # inputs/outputs may be rich structure |
|
adapter = TracingAdapter(model, inputs) |
|
|
|
# can now trace the model, with adapter.flattened_inputs, or another |
|
# tuple of tensors with the same length and meaning |
|
traced = torch.jit.trace(adapter, adapter.flattened_inputs) |
|
|
|
# traced model can only produce flattened outputs (tuple of tensors) |
|
flattened_outputs = traced(*adapter.flattened_inputs) |
|
# adapter knows the schema to convert it back (new_outputs == outputs) |
|
new_outputs = adapter.outputs_schema(flattened_outputs) |
|
""" |
|
|
|
flattened_inputs: Tuple[torch.Tensor] = None |
|
""" |
|
Flattened version of inputs given to this class's constructor. |
|
""" |
|
|
|
inputs_schema: Schema = None |
|
""" |
|
Schema of the inputs given to this class's constructor. |
|
""" |
|
|
|
outputs_schema: Schema = None |
|
""" |
|
Schema of the output produced by calling the given model with inputs. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model: nn.Module, |
|
inputs, |
|
inference_func: Optional[Callable] = None, |
|
allow_non_tensor: bool = False, |
|
): |
|
""" |
|
Args: |
|
model: an nn.Module |
|
inputs: An input argument or a tuple of input arguments used to call model. |
|
After flattening, it has to only consist of tensors. |
|
inference_func: a callable that takes (model, *inputs), calls the |
|
model with inputs, and return outputs. By default it |
|
is ``lambda model, *inputs: model(*inputs)``. Can be override |
|
if you need to call the model differently. |
|
allow_non_tensor: allow inputs/outputs to contain non-tensor objects. |
|
This option will filter out non-tensor objects to make the |
|
model traceable, but ``inputs_schema``/``outputs_schema`` cannot be |
|
used anymore because inputs/outputs cannot be rebuilt from pure tensors. |
|
This is useful when you're only interested in the single trace of |
|
execution (e.g. for flop count), but not interested in |
|
generalizing the traced graph to new inputs. |
|
""" |
|
super().__init__() |
|
if isinstance(model, (nn.parallel.distributed.DistributedDataParallel, nn.DataParallel)): |
|
model = model.module |
|
self.model = model |
|
if not isinstance(inputs, tuple): |
|
inputs = (inputs,) |
|
self.inputs = inputs |
|
self.allow_non_tensor = allow_non_tensor |
|
|
|
if inference_func is None: |
|
inference_func = lambda model, *inputs: model(*inputs) |
|
self.inference_func = inference_func |
|
|
|
self.flattened_inputs, self.inputs_schema = flatten_to_tuple(inputs) |
|
|
|
if all(isinstance(x, torch.Tensor) for x in self.flattened_inputs): |
|
return |
|
if self.allow_non_tensor: |
|
self.flattened_inputs = tuple( |
|
[x for x in self.flattened_inputs if isinstance(x, torch.Tensor)] |
|
) |
|
self.inputs_schema = None |
|
else: |
|
for input in self.flattened_inputs: |
|
if not isinstance(input, torch.Tensor): |
|
raise ValueError( |
|
"Inputs for tracing must only contain tensors. " |
|
f"Got a {type(input)} instead." |
|
) |
|
|
|
def forward(self, *args: torch.Tensor): |
|
with torch.no_grad(), patch_builtin_len(): |
|
if self.inputs_schema is not None: |
|
inputs_orig_format = self.inputs_schema(args) |
|
else: |
|
if len(args) != len(self.flattened_inputs) or any( |
|
x is not y for x, y in zip(args, self.flattened_inputs) |
|
): |
|
raise ValueError( |
|
"TracingAdapter does not contain valid inputs_schema." |
|
" So it cannot generalize to other inputs and must be" |
|
" traced with `.flattened_inputs`." |
|
) |
|
inputs_orig_format = self.inputs |
|
|
|
outputs = self.inference_func(self.model, *inputs_orig_format) |
|
flattened_outputs, schema = flatten_to_tuple(outputs) |
|
|
|
flattened_output_tensors = tuple( |
|
[x for x in flattened_outputs if isinstance(x, torch.Tensor)] |
|
) |
|
if len(flattened_output_tensors) < len(flattened_outputs): |
|
if self.allow_non_tensor: |
|
flattened_outputs = flattened_output_tensors |
|
self.outputs_schema = None |
|
else: |
|
raise ValueError( |
|
"Model cannot be traced because some model outputs " |
|
"cannot flatten to tensors." |
|
) |
|
else: |
|
if self.outputs_schema is None: |
|
self.outputs_schema = schema |
|
else: |
|
assert self.outputs_schema == schema, ( |
|
"Model should always return outputs with the same " |
|
"structure so it can be traced!" |
|
) |
|
return flattened_outputs |
|
|
|
def _create_wrapper(self, traced_model): |
|
""" |
|
Return a function that has an input/output interface the same as the |
|
original model, but it calls the given traced model under the hood. |
|
""" |
|
|
|
def forward(*args): |
|
flattened_inputs, _ = flatten_to_tuple(args) |
|
flattened_outputs = traced_model(*flattened_inputs) |
|
return self.outputs_schema(flattened_outputs) |
|
|
|
return forward |
|
|