|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 |
|
import torch |
|
|
|
class BRG2Tensor_transform(object): |
|
def __call__(self, pic): |
|
img = torch.from_numpy(pic.transpose((2, 0, 1))) |
|
if isinstance(img, torch.ByteTensor): |
|
return img.float() |
|
else: |
|
return img |
|
|
|
class BGR2RGB_transform(object): |
|
def __call__(self, tensor): |
|
return tensor[[2,1,0],:,:] |
|
|
|
def flip_back(output_flipped, matched_parts): |
|
''' |
|
ouput_flipped: numpy.ndarray(batch_size, num_joints, height, width) |
|
''' |
|
assert output_flipped.ndim == 4,\ |
|
'output_flipped should be [batch_size, num_joints, height, width]' |
|
|
|
output_flipped = output_flipped[:, :, :, ::-1] |
|
|
|
for pair in matched_parts: |
|
tmp = output_flipped[:, pair[0], :, :].copy() |
|
output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :] |
|
output_flipped[:, pair[1], :, :] = tmp |
|
|
|
return output_flipped |
|
|
|
|
|
def fliplr_joints(joints, joints_vis, width, matched_parts): |
|
""" |
|
flip coords |
|
""" |
|
|
|
joints[:, 0] = width - joints[:, 0] - 1 |
|
|
|
|
|
for pair in matched_parts: |
|
joints[pair[0], :], joints[pair[1], :] = \ |
|
joints[pair[1], :], joints[pair[0], :].copy() |
|
joints_vis[pair[0], :], joints_vis[pair[1], :] = \ |
|
joints_vis[pair[1], :], joints_vis[pair[0], :].copy() |
|
|
|
return joints*joints_vis, joints_vis |
|
|
|
|
|
def transform_preds(coords, center, scale, input_size): |
|
target_coords = np.zeros(coords.shape) |
|
trans = get_affine_transform(center, scale, 0, input_size, inv=1) |
|
for p in range(coords.shape[0]): |
|
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) |
|
return target_coords |
|
|
|
def transform_parsing(pred, center, scale, width, height, input_size): |
|
|
|
trans = get_affine_transform(center, scale, 0, input_size, inv=1) |
|
target_pred = cv2.warpAffine( |
|
pred, |
|
trans, |
|
(int(width), int(height)), |
|
flags=cv2.INTER_NEAREST, |
|
borderMode=cv2.BORDER_CONSTANT, |
|
borderValue=(0)) |
|
|
|
return target_pred |
|
|
|
def transform_logits(logits, center, scale, width, height, input_size): |
|
|
|
trans = get_affine_transform(center, scale, 0, input_size, inv=1) |
|
channel = logits.shape[2] |
|
target_logits = [] |
|
for i in range(channel): |
|
target_logit = cv2.warpAffine( |
|
logits[:,:,i], |
|
trans, |
|
(int(width), int(height)), |
|
flags=cv2.INTER_LINEAR, |
|
borderMode=cv2.BORDER_CONSTANT, |
|
borderValue=(0)) |
|
target_logits.append(target_logit) |
|
target_logits = np.stack(target_logits,axis=2) |
|
|
|
return target_logits |
|
|
|
|
|
def get_affine_transform(center, |
|
scale, |
|
rot, |
|
output_size, |
|
shift=np.array([0, 0], dtype=np.float32), |
|
inv=0): |
|
if not isinstance(scale, np.ndarray) and not isinstance(scale, list): |
|
print(scale) |
|
scale = np.array([scale, scale]) |
|
|
|
scale_tmp = scale |
|
|
|
src_w = scale_tmp[0] |
|
dst_w = output_size[1] |
|
dst_h = output_size[0] |
|
|
|
rot_rad = np.pi * rot / 180 |
|
src_dir = get_dir([0, src_w * -0.5], rot_rad) |
|
dst_dir = np.array([0, (dst_w-1) * -0.5], np.float32) |
|
|
|
src = np.zeros((3, 2), dtype=np.float32) |
|
dst = np.zeros((3, 2), dtype=np.float32) |
|
src[0, :] = center + scale_tmp * shift |
|
src[1, :] = center + src_dir + scale_tmp * shift |
|
dst[0, :] = [(dst_w-1) * 0.5, (dst_h-1) * 0.5] |
|
dst[1, :] = np.array([(dst_w-1) * 0.5, (dst_h-1) * 0.5]) + dst_dir |
|
|
|
src[2:, :] = get_3rd_point(src[0, :], src[1, :]) |
|
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) |
|
|
|
if inv: |
|
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) |
|
else: |
|
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) |
|
|
|
return trans |
|
|
|
|
|
def affine_transform(pt, t): |
|
new_pt = np.array([pt[0], pt[1], 1.]).T |
|
new_pt = np.dot(t, new_pt) |
|
return new_pt[:2] |
|
|
|
|
|
def get_3rd_point(a, b): |
|
direct = a - b |
|
return b + np.array([-direct[1], direct[0]], dtype=np.float32) |
|
|
|
|
|
def get_dir(src_point, rot_rad): |
|
sn, cs = np.sin(rot_rad), np.cos(rot_rad) |
|
|
|
src_result = [0, 0] |
|
src_result[0] = src_point[0] * cs - src_point[1] * sn |
|
src_result[1] = src_point[0] * sn + src_point[1] * cs |
|
|
|
return src_result |
|
|
|
|
|
def crop(img, center, scale, output_size, rot=0): |
|
trans = get_affine_transform(center, scale, rot, output_size) |
|
|
|
dst_img = cv2.warpAffine(img, |
|
trans, |
|
(int(output_size[1]), int(output_size[0])), |
|
flags=cv2.INTER_LINEAR) |
|
|
|
return dst_img |
|
|