|
|
|
|
|
|
|
""" |
|
DensePose Training Script. |
|
|
|
This script is similar to the training script in detectron2/tools. |
|
|
|
It is an example of how a user might use detectron2 for a new project. |
|
""" |
|
|
|
import logging |
|
import os |
|
from collections import OrderedDict |
|
from fvcore.common.file_io import PathManager |
|
|
|
import detectron2.utils.comm as comm |
|
from detectron2.checkpoint import DetectionCheckpointer |
|
from detectron2.config import CfgNode, get_cfg |
|
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch |
|
from detectron2.evaluation import COCOEvaluator, DatasetEvaluators, verify_results |
|
from detectron2.modeling import DatasetMapperTTA |
|
from detectron2.utils.logger import setup_logger |
|
|
|
from densepose import ( |
|
DensePoseCOCOEvaluator, |
|
DensePoseGeneralizedRCNNWithTTA, |
|
add_dataset_category_config, |
|
add_densepose_config, |
|
load_from_cfg, |
|
) |
|
from densepose.data import DatasetMapper, build_detection_test_loader, build_detection_train_loader |
|
|
|
|
|
class Trainer(DefaultTrainer): |
|
@classmethod |
|
def build_evaluator(cls, cfg: CfgNode, dataset_name, output_folder=None): |
|
if output_folder is None: |
|
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") |
|
evaluators = [COCOEvaluator(dataset_name, cfg, True, output_folder)] |
|
if cfg.MODEL.DENSEPOSE_ON: |
|
evaluators.append(DensePoseCOCOEvaluator(dataset_name, True, output_folder)) |
|
return DatasetEvaluators(evaluators) |
|
|
|
@classmethod |
|
def build_test_loader(cls, cfg: CfgNode, dataset_name): |
|
return build_detection_test_loader(cfg, dataset_name, mapper=DatasetMapper(cfg, False)) |
|
|
|
@classmethod |
|
def build_train_loader(cls, cfg: CfgNode): |
|
return build_detection_train_loader(cfg, mapper=DatasetMapper(cfg, True)) |
|
|
|
@classmethod |
|
def test_with_TTA(cls, cfg: CfgNode, model): |
|
logger = logging.getLogger("detectron2.trainer") |
|
|
|
|
|
logger.info("Running inference with test-time augmentation ...") |
|
transform_data = load_from_cfg(cfg) |
|
model = DensePoseGeneralizedRCNNWithTTA(cfg, model, transform_data, DatasetMapperTTA(cfg)) |
|
evaluators = [ |
|
cls.build_evaluator( |
|
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA") |
|
) |
|
for name in cfg.DATASETS.TEST |
|
] |
|
res = cls.test(cfg, model, evaluators) |
|
res = OrderedDict({k + "_TTA": v for k, v in res.items()}) |
|
return res |
|
|
|
|
|
def setup(args): |
|
cfg = get_cfg() |
|
add_dataset_category_config(cfg) |
|
add_densepose_config(cfg) |
|
cfg.merge_from_file(args.config_file) |
|
cfg.merge_from_list(args.opts) |
|
cfg.freeze() |
|
default_setup(cfg, args) |
|
|
|
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="densepose") |
|
return cfg |
|
|
|
|
|
def main(args): |
|
cfg = setup(args) |
|
|
|
|
|
PathManager.set_strict_kwargs_checking(False) |
|
|
|
if args.eval_only: |
|
model = Trainer.build_model(cfg) |
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( |
|
cfg.MODEL.WEIGHTS, resume=args.resume |
|
) |
|
res = Trainer.test(cfg, model) |
|
if cfg.TEST.AUG.ENABLED: |
|
res.update(Trainer.test_with_TTA(cfg, model)) |
|
if comm.is_main_process(): |
|
verify_results(cfg, res) |
|
return res |
|
|
|
trainer = Trainer(cfg) |
|
trainer.resume_or_load(resume=args.resume) |
|
if cfg.TEST.AUG.ENABLED: |
|
trainer.register_hooks( |
|
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))] |
|
) |
|
return trainer.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = default_argument_parser().parse_args() |
|
print("Command Line Args:", args) |
|
launch( |
|
main, |
|
args.num_gpus, |
|
num_machines=args.num_machines, |
|
machine_rank=args.machine_rank, |
|
dist_url=args.dist_url, |
|
args=(args,), |
|
) |
|
|