|
|
|
import copy |
|
import json |
|
import os |
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog |
|
from detectron2.utils.file_io import PathManager |
|
|
|
from .coco import load_coco_json, load_sem_seg |
|
|
|
__all__ = ["register_coco_panoptic", "register_coco_panoptic_separated"] |
|
|
|
|
|
def load_coco_panoptic_json(json_file, image_dir, gt_dir, meta): |
|
""" |
|
Args: |
|
image_dir (str): path to the raw dataset. e.g., "~/coco/train2017". |
|
gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017". |
|
json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json". |
|
|
|
Returns: |
|
list[dict]: a list of dicts in Detectron2 standard format. (See |
|
`Using Custom Datasets </tutorials/datasets.html>`_ ) |
|
""" |
|
|
|
def _convert_category_id(segment_info, meta): |
|
if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]: |
|
segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ |
|
segment_info["category_id"] |
|
] |
|
segment_info["isthing"] = True |
|
else: |
|
segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][ |
|
segment_info["category_id"] |
|
] |
|
segment_info["isthing"] = False |
|
return segment_info |
|
|
|
with PathManager.open(json_file) as f: |
|
json_info = json.load(f) |
|
|
|
ret = [] |
|
for ann in json_info["annotations"]: |
|
image_id = int(ann["image_id"]) |
|
|
|
|
|
|
|
|
|
image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg") |
|
label_file = os.path.join(gt_dir, ann["file_name"]) |
|
segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]] |
|
ret.append( |
|
{ |
|
"file_name": image_file, |
|
"image_id": image_id, |
|
"pan_seg_file_name": label_file, |
|
"segments_info": segments_info, |
|
} |
|
) |
|
assert len(ret), f"No images found in {image_dir}!" |
|
assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"] |
|
assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"] |
|
return ret |
|
|
|
|
|
def register_coco_panoptic( |
|
name, metadata, image_root, panoptic_root, panoptic_json, instances_json=None |
|
): |
|
""" |
|
Register a "standard" version of COCO panoptic segmentation dataset named `name`. |
|
The dictionaries in this registered dataset follows detectron2's standard format. |
|
Hence it's called "standard". |
|
|
|
Args: |
|
name (str): the name that identifies a dataset, |
|
e.g. "coco_2017_train_panoptic" |
|
metadata (dict): extra metadata associated with this dataset. |
|
image_root (str): directory which contains all the images |
|
panoptic_root (str): directory which contains panoptic annotation images in COCO format |
|
panoptic_json (str): path to the json panoptic annotation file in COCO format |
|
sem_seg_root (none): not used, to be consistent with |
|
`register_coco_panoptic_separated`. |
|
instances_json (str): path to the json instance annotation file |
|
""" |
|
panoptic_name = name |
|
DatasetCatalog.register( |
|
panoptic_name, |
|
lambda: load_coco_panoptic_json(panoptic_json, image_root, panoptic_root, metadata), |
|
) |
|
MetadataCatalog.get(panoptic_name).set( |
|
panoptic_root=panoptic_root, |
|
image_root=image_root, |
|
panoptic_json=panoptic_json, |
|
json_file=instances_json, |
|
evaluator_type="coco_panoptic_seg", |
|
ignore_label=255, |
|
label_divisor=1000, |
|
**metadata, |
|
) |
|
|
|
|
|
def register_coco_panoptic_separated( |
|
name, metadata, image_root, panoptic_root, panoptic_json, sem_seg_root, instances_json |
|
): |
|
""" |
|
Register a "separated" version of COCO panoptic segmentation dataset named `name`. |
|
The annotations in this registered dataset will contain both instance annotations and |
|
semantic annotations, each with its own contiguous ids. Hence it's called "separated". |
|
|
|
It follows the setting used by the PanopticFPN paper: |
|
|
|
1. The instance annotations directly come from polygons in the COCO |
|
instances annotation task, rather than from the masks in the COCO panoptic annotations. |
|
|
|
The two format have small differences: |
|
Polygons in the instance annotations may have overlaps. |
|
The mask annotations are produced by labeling the overlapped polygons |
|
with depth ordering. |
|
|
|
2. The semantic annotations are converted from panoptic annotations, where |
|
all "things" are assigned a semantic id of 0. |
|
All semantic categories will therefore have ids in contiguous |
|
range [1, #stuff_categories]. |
|
|
|
This function will also register a pure semantic segmentation dataset |
|
named ``name + '_stuffonly'``. |
|
|
|
Args: |
|
name (str): the name that identifies a dataset, |
|
e.g. "coco_2017_train_panoptic" |
|
metadata (dict): extra metadata associated with this dataset. |
|
image_root (str): directory which contains all the images |
|
panoptic_root (str): directory which contains panoptic annotation images |
|
panoptic_json (str): path to the json panoptic annotation file |
|
sem_seg_root (str): directory which contains all the ground truth segmentation annotations. |
|
instances_json (str): path to the json instance annotation file |
|
""" |
|
panoptic_name = name + "_separated" |
|
DatasetCatalog.register( |
|
panoptic_name, |
|
lambda: merge_to_panoptic( |
|
load_coco_json(instances_json, image_root, panoptic_name), |
|
load_sem_seg(sem_seg_root, image_root), |
|
), |
|
) |
|
MetadataCatalog.get(panoptic_name).set( |
|
panoptic_root=panoptic_root, |
|
image_root=image_root, |
|
panoptic_json=panoptic_json, |
|
sem_seg_root=sem_seg_root, |
|
json_file=instances_json, |
|
evaluator_type="coco_panoptic_seg", |
|
ignore_label=255, |
|
**metadata, |
|
) |
|
|
|
semantic_name = name + "_stuffonly" |
|
DatasetCatalog.register(semantic_name, lambda: load_sem_seg(sem_seg_root, image_root)) |
|
MetadataCatalog.get(semantic_name).set( |
|
sem_seg_root=sem_seg_root, |
|
image_root=image_root, |
|
evaluator_type="sem_seg", |
|
ignore_label=255, |
|
**metadata, |
|
) |
|
|
|
|
|
def merge_to_panoptic(detection_dicts, sem_seg_dicts): |
|
""" |
|
Create dataset dicts for panoptic segmentation, by |
|
merging two dicts using "file_name" field to match their entries. |
|
|
|
Args: |
|
detection_dicts (list[dict]): lists of dicts for object detection or instance segmentation. |
|
sem_seg_dicts (list[dict]): lists of dicts for semantic segmentation. |
|
|
|
Returns: |
|
list[dict] (one per input image): Each dict contains all (key, value) pairs from dicts in |
|
both detection_dicts and sem_seg_dicts that correspond to the same image. |
|
The function assumes that the same key in different dicts has the same value. |
|
""" |
|
results = [] |
|
sem_seg_file_to_entry = {x["file_name"]: x for x in sem_seg_dicts} |
|
assert len(sem_seg_file_to_entry) > 0 |
|
|
|
for det_dict in detection_dicts: |
|
dic = copy.copy(det_dict) |
|
dic.update(sem_seg_file_to_entry[dic["file_name"]]) |
|
results.append(dic) |
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
""" |
|
Test the COCO panoptic dataset loader. |
|
|
|
Usage: |
|
python -m detectron2.data.datasets.coco_panoptic \ |
|
path/to/image_root path/to/panoptic_root path/to/panoptic_json dataset_name 10 |
|
|
|
"dataset_name" can be "coco_2017_train_panoptic", or other |
|
pre-registered ones |
|
""" |
|
from detectron2.utils.logger import setup_logger |
|
from detectron2.utils.visualizer import Visualizer |
|
import detectron2.data.datasets |
|
import sys |
|
from PIL import Image |
|
import numpy as np |
|
|
|
logger = setup_logger(name=__name__) |
|
assert sys.argv[4] in DatasetCatalog.list() |
|
meta = MetadataCatalog.get(sys.argv[4]) |
|
|
|
dicts = load_coco_panoptic_json(sys.argv[3], sys.argv[1], sys.argv[2], meta.as_dict()) |
|
logger.info("Done loading {} samples.".format(len(dicts))) |
|
|
|
dirname = "coco-data-vis" |
|
os.makedirs(dirname, exist_ok=True) |
|
num_imgs_to_vis = int(sys.argv[5]) |
|
for i, d in enumerate(dicts): |
|
img = np.array(Image.open(d["file_name"])) |
|
visualizer = Visualizer(img, metadata=meta) |
|
vis = visualizer.draw_dataset_dict(d) |
|
fpath = os.path.join(dirname, os.path.basename(d["file_name"])) |
|
vis.save(fpath) |
|
if i + 1 >= num_imgs_to_vis: |
|
break |
|
|