Spaces:
Build error
Build error
Upload 8 files
Browse files- app.py +382 -1
- controlnet/controlnet_canny.py +66 -0
- controlnet/controlnet_depth.py +59 -0
- controlnet/controlnet_hed.py +57 -0
- controlnet/controlnet_mlsd.py +57 -0
- controlnet/controlnet_pose.py +55 -0
- controlnet/controlnet_scribble.py +55 -0
- controlnet/controlnet_seg.py +113 -0
app.py
CHANGED
@@ -1,8 +1,20 @@
|
|
|
|
1 |
from utils.image2image import stable_diffusion_img2img
|
2 |
from utils.text2image import stable_diffusion_text2img
|
3 |
from utils.inpaint import stable_diffusion_inpaint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
|
|
|
6 |
stable_model_list = [
|
7 |
"runwayml/stable-diffusion-v1-5",
|
8 |
"stabilityai/stable-diffusion-2",
|
@@ -27,7 +39,7 @@ stable_negative_prompt_list = [
|
|
27 |
]
|
28 |
app = gr.Blocks()
|
29 |
with app:
|
30 |
-
gr.Markdown("# **<h2 align='center'>Stable Diffusion
|
31 |
gr.Markdown(
|
32 |
"""
|
33 |
<h5 style='text-align: center'>
|
@@ -178,6 +190,288 @@ with app:
|
|
178 |
|
179 |
inpaint_predict = gr.Button(value='Generator')
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
with gr.Tab('Generator'):
|
182 |
with gr.Column():
|
183 |
output_image = gr.Image(label='Image')
|
@@ -222,4 +516,91 @@ with app:
|
|
222 |
outputs = [output_image],
|
223 |
)
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
app.launch()
|
|
|
1 |
+
|
2 |
from utils.image2image import stable_diffusion_img2img
|
3 |
from utils.text2image import stable_diffusion_text2img
|
4 |
from utils.inpaint import stable_diffusion_inpaint
|
5 |
+
|
6 |
+
from controlnet.controlnet_canny import stable_diffusion_controlnet_img2img
|
7 |
+
from controlnet.controlnet_depth import stable_diffusion_controlnet_img2img
|
8 |
+
from controlnet.controlnet_hed import stable_diffusion_controlnet_img2img
|
9 |
+
from controlnet.controlnet_mlsd import stable_diffusion_controlnet_img2img
|
10 |
+
from controlnet.controlnet_pose import stable_diffusion_controlnet_img2img
|
11 |
+
from controlnet.controlnet_scribble import stable_diffusion_controlnet_img2img
|
12 |
+
from controlnet.controlnet_seg import stable_diffusion_controlnet_img2img
|
13 |
+
|
14 |
+
|
15 |
import gradio as gr
|
16 |
|
17 |
+
|
18 |
stable_model_list = [
|
19 |
"runwayml/stable-diffusion-v1-5",
|
20 |
"stabilityai/stable-diffusion-2",
|
|
|
39 |
]
|
40 |
app = gr.Blocks()
|
41 |
with app:
|
42 |
+
gr.Markdown("# **<h2 align='center'>Stable Diffusion WebUI<h2>**")
|
43 |
gr.Markdown(
|
44 |
"""
|
45 |
<h5 style='text-align: center'>
|
|
|
190 |
|
191 |
inpaint_predict = gr.Button(value='Generator')
|
192 |
|
193 |
+
|
194 |
+
with gr.Tab('ControlNet'):
|
195 |
+
with gr.Tab('Canny'):
|
196 |
+
controlnet_image_file = gr.Image(label='Image')
|
197 |
+
|
198 |
+
controlnet_model_id = gr.Dropdown(
|
199 |
+
choices=stable_inpiant_model_list,
|
200 |
+
value=stable_inpiant_model_list[0],
|
201 |
+
label='Stable Model Id'
|
202 |
+
)
|
203 |
+
|
204 |
+
controlnet_prompt = gr.Textbox(
|
205 |
+
lines=1,
|
206 |
+
value=stable_prompt_list[0],
|
207 |
+
label='Prompt'
|
208 |
+
)
|
209 |
+
|
210 |
+
controlnet_negative_prompt = gr.Textbox(
|
211 |
+
lines=1,
|
212 |
+
value=stable_negative_prompt_list[0],
|
213 |
+
label='Negative Prompt'
|
214 |
+
)
|
215 |
+
|
216 |
+
with gr.Accordion("Advanced Options", open=False):
|
217 |
+
controlnet_guidance_scale = gr.Slider(
|
218 |
+
minimum=0.1,
|
219 |
+
maximum=15,
|
220 |
+
step=0.1,
|
221 |
+
value=7.5,
|
222 |
+
label='Guidance Scale'
|
223 |
+
)
|
224 |
+
|
225 |
+
controlnet_num_inference_step = gr.Slider(
|
226 |
+
minimum=1,
|
227 |
+
maximum=100,
|
228 |
+
step=1,
|
229 |
+
value=50,
|
230 |
+
label='Num Inference Step'
|
231 |
+
)
|
232 |
+
|
233 |
+
controlnet_canny_predict = gr.Button(value='Generator')
|
234 |
+
|
235 |
+
with gr.Tab('Hed'):
|
236 |
+
controlnet_image_file = gr.Image(label='Image')
|
237 |
+
|
238 |
+
controlnet_model_id = gr.Dropdown(
|
239 |
+
choices=stable_inpiant_model_list,
|
240 |
+
value=stable_inpiant_model_list[0],
|
241 |
+
label='Stable Model Id'
|
242 |
+
)
|
243 |
+
|
244 |
+
controlnet_prompt = gr.Textbox(
|
245 |
+
lines=1,
|
246 |
+
value=stable_prompt_list[0],
|
247 |
+
label='Prompt'
|
248 |
+
)
|
249 |
+
|
250 |
+
controlnet_negative_prompt = gr.Textbox(
|
251 |
+
lines=1,
|
252 |
+
value=stable_negative_prompt_list[0],
|
253 |
+
label='Negative Prompt'
|
254 |
+
)
|
255 |
+
|
256 |
+
with gr.Accordion("Advanced Options", open=False):
|
257 |
+
controlnet_guidance_scale = gr.Slider(
|
258 |
+
minimum=0.1,
|
259 |
+
maximum=15,
|
260 |
+
step=0.1,
|
261 |
+
value=7.5,
|
262 |
+
label='Guidance Scale'
|
263 |
+
)
|
264 |
+
|
265 |
+
controlnet_num_inference_step = gr.Slider(
|
266 |
+
minimum=1,
|
267 |
+
maximum=100,
|
268 |
+
step=1,
|
269 |
+
value=50,
|
270 |
+
label='Num Inference Step'
|
271 |
+
)
|
272 |
+
|
273 |
+
controlnet_hed_predict = gr.Button(value='Generator')
|
274 |
+
|
275 |
+
with gr.Tab('MLSD line'):
|
276 |
+
controlnet_image_file = gr.Image(label='Image')
|
277 |
+
|
278 |
+
controlnet_model_id = gr.Dropdown(
|
279 |
+
choices=stable_inpiant_model_list,
|
280 |
+
value=stable_inpiant_model_list[0],
|
281 |
+
label='Stable Model Id'
|
282 |
+
)
|
283 |
+
|
284 |
+
controlnet_prompt = gr.Textbox(
|
285 |
+
lines=1,
|
286 |
+
value=stable_prompt_list[0],
|
287 |
+
label='Prompt'
|
288 |
+
)
|
289 |
+
|
290 |
+
controlnet_negative_prompt = gr.Textbox(
|
291 |
+
lines=1,
|
292 |
+
value=stable_negative_prompt_list[0],
|
293 |
+
label='Negative Prompt'
|
294 |
+
)
|
295 |
+
|
296 |
+
with gr.Accordion("Advanced Options", open=False):
|
297 |
+
controlnet_guidance_scale = gr.Slider(
|
298 |
+
minimum=0.1,
|
299 |
+
maximum=15,
|
300 |
+
step=0.1,
|
301 |
+
value=7.5,
|
302 |
+
label='Guidance Scale'
|
303 |
+
)
|
304 |
+
|
305 |
+
controlnet_num_inference_step = gr.Slider(
|
306 |
+
minimum=1,
|
307 |
+
maximum=100,
|
308 |
+
step=1,
|
309 |
+
value=50,
|
310 |
+
label='Num Inference Step'
|
311 |
+
)
|
312 |
+
|
313 |
+
controlnet_mlsd_predict = gr.Button(value='Generator')
|
314 |
+
|
315 |
+
with gr.Tab('Segmentation'):
|
316 |
+
controlnet_image_file = gr.Image(label='Image')
|
317 |
+
|
318 |
+
controlnet_model_id = gr.Dropdown(
|
319 |
+
choices=stable_inpiant_model_list,
|
320 |
+
value=stable_inpiant_model_list[0],
|
321 |
+
label='Stable Model Id'
|
322 |
+
)
|
323 |
+
|
324 |
+
controlnet_prompt = gr.Textbox(
|
325 |
+
lines=1,
|
326 |
+
value=stable_prompt_list[0],
|
327 |
+
label='Prompt'
|
328 |
+
)
|
329 |
+
|
330 |
+
controlnet_negative_prompt = gr.Textbox(
|
331 |
+
lines=1,
|
332 |
+
value=stable_negative_prompt_list[0],
|
333 |
+
label='Negative Prompt'
|
334 |
+
)
|
335 |
+
|
336 |
+
with gr.Accordion("Advanced Options", open=False):
|
337 |
+
controlnet_guidance_scale = gr.Slider(
|
338 |
+
minimum=0.1,
|
339 |
+
maximum=15,
|
340 |
+
step=0.1,
|
341 |
+
value=7.5,
|
342 |
+
label='Guidance Scale'
|
343 |
+
)
|
344 |
+
|
345 |
+
controlnet_num_inference_step = gr.Slider(
|
346 |
+
minimum=1,
|
347 |
+
maximum=100,
|
348 |
+
step=1,
|
349 |
+
value=50,
|
350 |
+
label='Num Inference Step'
|
351 |
+
)
|
352 |
+
|
353 |
+
controlnet_seg_predict = gr.Button(value='Generator')
|
354 |
+
|
355 |
+
with gr.Tab('Depth'):
|
356 |
+
controlnet_image_file = gr.Image(label='Image')
|
357 |
+
|
358 |
+
controlnet_model_id = gr.Dropdown(
|
359 |
+
choices=stable_inpiant_model_list,
|
360 |
+
value=stable_inpiant_model_list[0],
|
361 |
+
label='Stable Model Id'
|
362 |
+
)
|
363 |
+
|
364 |
+
controlnet_prompt = gr.Textbox(
|
365 |
+
lines=1,
|
366 |
+
value=stable_prompt_list[0],
|
367 |
+
label='Prompt'
|
368 |
+
)
|
369 |
+
|
370 |
+
controlnet_negative_prompt = gr.Textbox(
|
371 |
+
lines=1,
|
372 |
+
value=stable_negative_prompt_list[0],
|
373 |
+
label='Negative Prompt'
|
374 |
+
)
|
375 |
+
|
376 |
+
with gr.Accordion("Advanced Options", open=False):
|
377 |
+
controlnet_guidance_scale = gr.Slider(
|
378 |
+
minimum=0.1,
|
379 |
+
maximum=15,
|
380 |
+
step=0.1,
|
381 |
+
value=7.5,
|
382 |
+
label='Guidance Scale'
|
383 |
+
)
|
384 |
+
|
385 |
+
controlnet_num_inference_step = gr.Slider(
|
386 |
+
minimum=1,
|
387 |
+
maximum=100,
|
388 |
+
step=1,
|
389 |
+
value=50,
|
390 |
+
label='Num Inference Step'
|
391 |
+
)
|
392 |
+
|
393 |
+
controlnet_depth_predict = gr.Button(value='Generator')
|
394 |
+
|
395 |
+
with gr.Tab('Scribble'):
|
396 |
+
controlnet_image_file = gr.Image(label='Image')
|
397 |
+
|
398 |
+
controlnet_model_id = gr.Dropdown(
|
399 |
+
choices=stable_inpiant_model_list,
|
400 |
+
value=stable_inpiant_model_list[0],
|
401 |
+
label='Stable Model Id'
|
402 |
+
)
|
403 |
+
|
404 |
+
controlnet_prompt = gr.Textbox(
|
405 |
+
lines=1,
|
406 |
+
value=stable_prompt_list[0],
|
407 |
+
label='Prompt'
|
408 |
+
)
|
409 |
+
|
410 |
+
controlnet_negative_prompt = gr.Textbox(
|
411 |
+
lines=1,
|
412 |
+
value=stable_negative_prompt_list[0],
|
413 |
+
label='Negative Prompt'
|
414 |
+
)
|
415 |
+
|
416 |
+
with gr.Accordion("Advanced Options", open=False):
|
417 |
+
controlnet_guidance_scale = gr.Slider(
|
418 |
+
minimum=0.1,
|
419 |
+
maximum=15,
|
420 |
+
step=0.1,
|
421 |
+
value=7.5,
|
422 |
+
label='Guidance Scale'
|
423 |
+
)
|
424 |
+
|
425 |
+
controlnet_num_inference_step = gr.Slider(
|
426 |
+
minimum=1,
|
427 |
+
maximum=100,
|
428 |
+
step=1,
|
429 |
+
value=50,
|
430 |
+
label='Num Inference Step'
|
431 |
+
)
|
432 |
+
|
433 |
+
controlnet_scribble_predict = gr.Button(value='Generator')
|
434 |
+
|
435 |
+
with gr.Tab('Pose'):
|
436 |
+
controlnet_image_file = gr.Image(label='Image')
|
437 |
+
|
438 |
+
controlnet_model_id = gr.Dropdown(
|
439 |
+
choices=stable_inpiant_model_list,
|
440 |
+
value=stable_inpiant_model_list[0],
|
441 |
+
label='Stable Model Id'
|
442 |
+
)
|
443 |
+
|
444 |
+
controlnet_prompt = gr.Textbox(
|
445 |
+
lines=1,
|
446 |
+
value=stable_prompt_list[0],
|
447 |
+
label='Prompt'
|
448 |
+
)
|
449 |
+
|
450 |
+
controlnet_negative_prompt = gr.Textbox(
|
451 |
+
lines=1,
|
452 |
+
value=stable_negative_prompt_list[0],
|
453 |
+
label='Negative Prompt'
|
454 |
+
)
|
455 |
+
|
456 |
+
with gr.Accordion("Advanced Options", open=False):
|
457 |
+
controlnet_guidance_scale = gr.Slider(
|
458 |
+
minimum=0.1,
|
459 |
+
maximum=15,
|
460 |
+
step=0.1,
|
461 |
+
value=7.5,
|
462 |
+
label='Guidance Scale'
|
463 |
+
)
|
464 |
+
|
465 |
+
controlnet_num_inference_step = gr.Slider(
|
466 |
+
minimum=1,
|
467 |
+
maximum=100,
|
468 |
+
step=1,
|
469 |
+
value=50,
|
470 |
+
label='Num Inference Step'
|
471 |
+
)
|
472 |
+
|
473 |
+
controlnet_pose_predict = gr.Button(value='Generator')
|
474 |
+
|
475 |
with gr.Tab('Generator'):
|
476 |
with gr.Column():
|
477 |
output_image = gr.Image(label='Image')
|
|
|
516 |
outputs = [output_image],
|
517 |
)
|
518 |
|
519 |
+
|
520 |
+
controlnet_canny_predict.click(
|
521 |
+
fn = stable_diffusion_controlnet_img2img,
|
522 |
+
inputs = [
|
523 |
+
inpaint_image_file,
|
524 |
+
inpaint_model_id,
|
525 |
+
inpaint_prompt,
|
526 |
+
inpaint_negative_prompt,
|
527 |
+
inpaint_guidance_scale,
|
528 |
+
inpaint_num_inference_step,
|
529 |
+
],
|
530 |
+
outputs = [output_image],
|
531 |
+
)
|
532 |
+
|
533 |
+
controlnet_hed_predict.click(
|
534 |
+
fn = stable_diffusion_controlnet_img2img,
|
535 |
+
inputs = [
|
536 |
+
inpaint_image_file,
|
537 |
+
inpaint_model_id,
|
538 |
+
inpaint_prompt,
|
539 |
+
inpaint_negative_prompt,
|
540 |
+
inpaint_guidance_scale,
|
541 |
+
inpaint_num_inference_step,
|
542 |
+
],
|
543 |
+
outputs = [output_image],
|
544 |
+
)
|
545 |
+
controlnet_mlsd_predict.click(
|
546 |
+
fn = stable_diffusion_controlnet_img2img,
|
547 |
+
inputs = [
|
548 |
+
inpaint_image_file,
|
549 |
+
inpaint_model_id,
|
550 |
+
inpaint_prompt,
|
551 |
+
inpaint_negative_prompt,
|
552 |
+
inpaint_guidance_scale,
|
553 |
+
inpaint_num_inference_step,
|
554 |
+
],
|
555 |
+
outputs = [output_image],
|
556 |
+
)
|
557 |
+
controlnet_seg_predict.click(
|
558 |
+
fn = stable_diffusion_controlnet_img2img,
|
559 |
+
inputs = [
|
560 |
+
inpaint_image_file,
|
561 |
+
inpaint_model_id,
|
562 |
+
inpaint_prompt,
|
563 |
+
inpaint_negative_prompt,
|
564 |
+
inpaint_guidance_scale,
|
565 |
+
inpaint_num_inference_step,
|
566 |
+
],
|
567 |
+
outputs = [output_image],
|
568 |
+
)
|
569 |
+
controlnet_depth_predict.click(
|
570 |
+
fn = stable_diffusion_controlnet_img2img,
|
571 |
+
inputs = [
|
572 |
+
inpaint_image_file,
|
573 |
+
inpaint_model_id,
|
574 |
+
inpaint_prompt,
|
575 |
+
inpaint_negative_prompt,
|
576 |
+
inpaint_guidance_scale,
|
577 |
+
inpaint_num_inference_step,
|
578 |
+
],
|
579 |
+
outputs = [output_image],
|
580 |
+
)
|
581 |
+
controlnet_scribble_predict.click(
|
582 |
+
fn = stable_diffusion_controlnet_img2img,
|
583 |
+
inputs = [
|
584 |
+
inpaint_image_file,
|
585 |
+
inpaint_model_id,
|
586 |
+
inpaint_prompt,
|
587 |
+
inpaint_negative_prompt,
|
588 |
+
inpaint_guidance_scale,
|
589 |
+
inpaint_num_inference_step,
|
590 |
+
],
|
591 |
+
outputs = [output_image],
|
592 |
+
)
|
593 |
+
controlnet_pose_predict.click(
|
594 |
+
fn = stable_diffusion_controlnet_img2img,
|
595 |
+
inputs = [
|
596 |
+
inpaint_image_file,
|
597 |
+
inpaint_model_id,
|
598 |
+
inpaint_prompt,
|
599 |
+
inpaint_negative_prompt,
|
600 |
+
inpaint_guidance_scale,
|
601 |
+
inpaint_num_inference_step,
|
602 |
+
],
|
603 |
+
outputs = [output_image],
|
604 |
+
)
|
605 |
+
|
606 |
app.launch()
|
controlnet/controlnet_canny.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
+
ControlNetModel, UniPCMultistepScheduler)
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import cv2
|
8 |
+
|
9 |
+
|
10 |
+
def controlnet_canny(
|
11 |
+
image_path:str,
|
12 |
+
low_th:int,
|
13 |
+
high_th:int,
|
14 |
+
):
|
15 |
+
image = Image.open(image_path)
|
16 |
+
image = np.array(image)
|
17 |
+
|
18 |
+
image = cv2.Canny(image, low_th, high_th)
|
19 |
+
image = image[:, :, None]
|
20 |
+
image = np.concatenate([image, image, image], axis=2)
|
21 |
+
image = Image.fromarray(image)
|
22 |
+
|
23 |
+
controlnet = ControlNetModel.from_pretrained(
|
24 |
+
"lllyasviel/sd-controlnet-canny",
|
25 |
+
torch_dtype=torch.float16
|
26 |
+
)
|
27 |
+
return controlnet, image
|
28 |
+
|
29 |
+
|
30 |
+
def stable_diffusion_controlnet_img2img(
|
31 |
+
stable_model_path:str,
|
32 |
+
image_path:str,
|
33 |
+
prompt:str,
|
34 |
+
negative_prompt:str,
|
35 |
+
num_samples:int,
|
36 |
+
guidance_scale:int,
|
37 |
+
num_inference_step:int,
|
38 |
+
low_th:int,
|
39 |
+
high_th:int
|
40 |
+
):
|
41 |
+
|
42 |
+
controlnet, image = controlnet_canny(
|
43 |
+
image_path=image_path,
|
44 |
+
low_th=low_th,
|
45 |
+
high_th=high_th
|
46 |
+
)
|
47 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
48 |
+
pretrained_model_name_or_path=stable_model_path,
|
49 |
+
controlnet=controlnet,
|
50 |
+
safety_checker=None,
|
51 |
+
torch_dtype=torch.float16,
|
52 |
+
)
|
53 |
+
pipe.to("cuda")
|
54 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
55 |
+
pipe.enable_xformers_memory_efficient_attention()
|
56 |
+
|
57 |
+
output = pipe(
|
58 |
+
prompt = prompt,
|
59 |
+
image = image,
|
60 |
+
negative_prompt = negative_prompt,
|
61 |
+
num_images_per_prompt = num_samples,
|
62 |
+
num_inference_steps = num_inference_step,
|
63 |
+
guidance_scale = guidance_scale,
|
64 |
+
).images
|
65 |
+
|
66 |
+
return output
|
controlnet/controlnet_depth.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
+
ControlNetModel, UniPCMultistepScheduler,
|
3 |
+
DDIMScheduler)
|
4 |
+
|
5 |
+
from transformers import pipeline
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
def controlnet_depth(image_path:str):
|
12 |
+
depth_estimator = pipeline('depth-estimation')
|
13 |
+
|
14 |
+
image = Image.open(image_path)
|
15 |
+
image = depth_estimator(image)['depth']
|
16 |
+
image = np.array(image)
|
17 |
+
image = image[:, :, None]
|
18 |
+
image = np.concatenate([image, image, image], axis=2)
|
19 |
+
image = Image.fromarray(image)
|
20 |
+
|
21 |
+
controlnet = ControlNetModel.from_pretrained(
|
22 |
+
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=torch.float16
|
23 |
+
)
|
24 |
+
|
25 |
+
return controlnet, image
|
26 |
+
|
27 |
+
def stable_diffusion_controlnet_img2img(
|
28 |
+
stable_model_path:str,
|
29 |
+
image_path:str,
|
30 |
+
prompt:str,
|
31 |
+
negative_prompt:str,
|
32 |
+
num_samples:int,
|
33 |
+
guidance_scale:int,
|
34 |
+
num_inference_step:int,
|
35 |
+
):
|
36 |
+
|
37 |
+
controlnet, image = controlnet_depth(image_path=image_path)
|
38 |
+
|
39 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
40 |
+
pretrained_model_name_or_path=stable_model_path,
|
41 |
+
controlnet=controlnet,
|
42 |
+
safety_checker=None,
|
43 |
+
torch_dtype=torch.float16
|
44 |
+
)
|
45 |
+
|
46 |
+
pipe.to("cuda")
|
47 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
48 |
+
pipe.enable_xformers_memory_efficient_attention()
|
49 |
+
|
50 |
+
output = pipe(
|
51 |
+
prompt = prompt,
|
52 |
+
image = image,
|
53 |
+
negative_prompt = negative_prompt,
|
54 |
+
num_images_per_prompt = num_samples,
|
55 |
+
num_inference_steps = num_inference_step,
|
56 |
+
guidance_scale = guidance_scale,
|
57 |
+
).images
|
58 |
+
|
59 |
+
return output
|
controlnet/controlnet_hed.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
+
ControlNetModel, UniPCMultistepScheduler,
|
3 |
+
DDIMScheduler)
|
4 |
+
|
5 |
+
from controlnet_aux import HEDdetector
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import cv2
|
10 |
+
|
11 |
+
|
12 |
+
def controlnet_hed(image_path:str):
|
13 |
+
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
14 |
+
|
15 |
+
image = Image.open(image_path)
|
16 |
+
image = hed(image)
|
17 |
+
|
18 |
+
controlnet = ControlNetModel.from_pretrained(
|
19 |
+
"fusing/stable-diffusion-v1-5-controlnet-hed",
|
20 |
+
torch_dtype=torch.float16
|
21 |
+
)
|
22 |
+
return controlnet, image
|
23 |
+
|
24 |
+
|
25 |
+
def stable_diffusion_controlnet_img2img(
|
26 |
+
stable_model_path:str,
|
27 |
+
image_path:str,
|
28 |
+
prompt:str,
|
29 |
+
negative_prompt:str,
|
30 |
+
num_samples:int,
|
31 |
+
guidance_scale:int,
|
32 |
+
num_inference_step:int,
|
33 |
+
):
|
34 |
+
|
35 |
+
controlnet, image = controlnet_hed(image_path=image_path)
|
36 |
+
|
37 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
38 |
+
pretrained_model_name_or_path=stable_model_path,
|
39 |
+
controlnet=controlnet,
|
40 |
+
safety_checker=None,
|
41 |
+
torch_dtype=torch.float16
|
42 |
+
)
|
43 |
+
|
44 |
+
pipe.to("cuda")
|
45 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
46 |
+
pipe.enable_xformers_memory_efficient_attention()
|
47 |
+
|
48 |
+
output = pipe(
|
49 |
+
prompt = prompt,
|
50 |
+
image = image,
|
51 |
+
negative_prompt = negative_prompt,
|
52 |
+
num_images_per_prompt = num_samples,
|
53 |
+
num_inference_steps = num_inference_step,
|
54 |
+
guidance_scale = guidance_scale,
|
55 |
+
).images
|
56 |
+
|
57 |
+
return output
|
controlnet/controlnet_mlsd.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
+
ControlNetModel, UniPCMultistepScheduler,
|
3 |
+
DDIMScheduler)
|
4 |
+
|
5 |
+
from controlnet_aux import MLSDdetector
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import cv2
|
10 |
+
|
11 |
+
|
12 |
+
def controlnet_mlsd(image_path:str):
|
13 |
+
mlsd = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
|
14 |
+
|
15 |
+
image = Image.open(image_path)
|
16 |
+
image = mlsd(image)
|
17 |
+
|
18 |
+
controlnet = ControlNetModel.from_pretrained(
|
19 |
+
"fusing/stable-diffusion-v1-5-controlnet-mlsd",
|
20 |
+
torch_dtype=torch.float16
|
21 |
+
)
|
22 |
+
|
23 |
+
return controlnet, image
|
24 |
+
|
25 |
+
def stable_diffusion_controlnet_img2img(
|
26 |
+
stable_model_path:str,
|
27 |
+
image_path:str,
|
28 |
+
prompt:str,
|
29 |
+
negative_prompt:str,
|
30 |
+
num_samples:int,
|
31 |
+
guidance_scale:int,
|
32 |
+
num_inference_step:int,
|
33 |
+
):
|
34 |
+
|
35 |
+
controlnet, image = controlnet_mlsd(image_path=image_path)
|
36 |
+
|
37 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
38 |
+
pretrained_model_name_or_path=stable_model_path,
|
39 |
+
controlnet=controlnet,
|
40 |
+
safety_checker=None,
|
41 |
+
torch_dtype=torch.float16
|
42 |
+
)
|
43 |
+
|
44 |
+
pipe.to("cuda")
|
45 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
46 |
+
pipe.enable_xformers_memory_efficient_attention()
|
47 |
+
|
48 |
+
output = pipe(
|
49 |
+
prompt = prompt,
|
50 |
+
image = image,
|
51 |
+
negative_prompt = negative_prompt,
|
52 |
+
num_images_per_prompt = num_samples,
|
53 |
+
num_inference_steps = num_inference_step,
|
54 |
+
guidance_scale = guidance_scale,
|
55 |
+
).images
|
56 |
+
|
57 |
+
return output
|
controlnet/controlnet_pose.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
+
ControlNetModel, UniPCMultistepScheduler)
|
3 |
+
|
4 |
+
from controlnet_aux import OpenposeDetector
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
def controlnet_pose(image_path:str):
|
11 |
+
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
12 |
+
|
13 |
+
image = Image.open(image_path)
|
14 |
+
image = openpose(image)
|
15 |
+
|
16 |
+
controlnet = ControlNetModel.from_pretrained(
|
17 |
+
"fusing/stable-diffusion-v1-5-controlnet-openpose",
|
18 |
+
torch_dtype=torch.float16
|
19 |
+
)
|
20 |
+
|
21 |
+
return controlnet, image
|
22 |
+
|
23 |
+
def stable_diffusion_controlnet_img2img(
|
24 |
+
stable_model_path:str,
|
25 |
+
image_path:str,
|
26 |
+
prompt:str,
|
27 |
+
negative_prompt:str,
|
28 |
+
num_samples:int,
|
29 |
+
guidance_scale:int,
|
30 |
+
num_inference_step:int,
|
31 |
+
):
|
32 |
+
|
33 |
+
controlnet, image = controlnet_pose(image_path=image_path)
|
34 |
+
|
35 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
36 |
+
pretrained_model_name_or_path=stable_model_path,
|
37 |
+
controlnet=controlnet,
|
38 |
+
safety_checker=None,
|
39 |
+
torch_dtype=torch.float16
|
40 |
+
)
|
41 |
+
|
42 |
+
pipe.to("cuda")
|
43 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
44 |
+
pipe.enable_xformers_memory_efficient_attention()
|
45 |
+
|
46 |
+
output = pipe(
|
47 |
+
prompt = prompt,
|
48 |
+
image = image,
|
49 |
+
negative_prompt = negative_prompt,
|
50 |
+
num_images_per_prompt = num_samples,
|
51 |
+
num_inference_steps = num_inference_step,
|
52 |
+
guidance_scale = guidance_scale,
|
53 |
+
).images
|
54 |
+
|
55 |
+
return output
|
controlnet/controlnet_scribble.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
+
ControlNetModel, UniPCMultistepScheduler,
|
3 |
+
DDIMScheduler)
|
4 |
+
|
5 |
+
from controlnet_aux import HEDdetector
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
def controlnet_scribble(image_path:str):
|
12 |
+
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
13 |
+
|
14 |
+
image = Image.open(image_path)
|
15 |
+
image = hed(image, scribble=True)
|
16 |
+
|
17 |
+
controlnet = ControlNetModel.from_pretrained(
|
18 |
+
"fusing/stable-diffusion-v1-5-controlnet-scribble", torch_dtype=torch.float16
|
19 |
+
)
|
20 |
+
|
21 |
+
return controlnet, image
|
22 |
+
|
23 |
+
def stable_diffusion_controlnet_img2img(
|
24 |
+
stable_model_path:str,
|
25 |
+
image_path:str,
|
26 |
+
prompt:str,
|
27 |
+
negative_prompt:str,
|
28 |
+
num_samples:int,
|
29 |
+
guidance_scale:int,
|
30 |
+
num_inference_step:int,
|
31 |
+
):
|
32 |
+
|
33 |
+
controlnet, image = controlnet_scribble(image_path=image_path)
|
34 |
+
|
35 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
36 |
+
pretrained_model_name_or_path=stable_model_path,
|
37 |
+
controlnet=controlnet,
|
38 |
+
safety_checker=None,
|
39 |
+
torch_dtype=torch.float16
|
40 |
+
)
|
41 |
+
|
42 |
+
pipe.to("cuda")
|
43 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
44 |
+
pipe.enable_xformers_memory_efficient_attention()
|
45 |
+
|
46 |
+
output = pipe(
|
47 |
+
prompt = prompt,
|
48 |
+
image = image,
|
49 |
+
negative_prompt = negative_prompt,
|
50 |
+
num_images_per_prompt = num_samples,
|
51 |
+
num_inference_steps = num_inference_step,
|
52 |
+
guidance_scale = guidance_scale,
|
53 |
+
).images
|
54 |
+
|
55 |
+
return output
|
controlnet/controlnet_seg.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
2 |
+
import torch
|
3 |
+
from diffusers import (StableDiffusionControlNetPipeline,
|
4 |
+
ControlNetModel, UniPCMultistepScheduler)
|
5 |
+
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
|
11 |
+
|
12 |
+
def ade_palette():
|
13 |
+
"""ADE20K palette that maps each class to RGB values."""
|
14 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
15 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
16 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
17 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
18 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
19 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
20 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
21 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
22 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
23 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
24 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
25 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
26 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
27 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
28 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
29 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
30 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
31 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
32 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
33 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
34 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
35 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
36 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
37 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
38 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
39 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
40 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
41 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
42 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
43 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
44 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
45 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
46 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
47 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
48 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
49 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
50 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
51 |
+
[102, 255, 0], [92, 0, 255]]
|
52 |
+
|
53 |
+
|
54 |
+
def controlnet_mlsd(image_path:str):
|
55 |
+
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
56 |
+
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
57 |
+
|
58 |
+
image = Image.open(image_path).convert('RGB')
|
59 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
60 |
+
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = image_segmentor(pixel_values)
|
63 |
+
|
64 |
+
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
65 |
+
|
66 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
67 |
+
palette = np.array(ade_palette())
|
68 |
+
|
69 |
+
for label, color in enumerate(palette):
|
70 |
+
color_seg[seg == label, :] = color
|
71 |
+
|
72 |
+
color_seg = color_seg.astype(np.uint8)
|
73 |
+
image = Image.fromarray(color_seg)
|
74 |
+
controlnet = ControlNetModel.from_pretrained(
|
75 |
+
"fusing/stable-diffusion-v1-5-controlnet-seg", torch_dtype=torch.float16
|
76 |
+
)
|
77 |
+
|
78 |
+
return controlnet, image
|
79 |
+
|
80 |
+
|
81 |
+
def stable_diffusion_controlnet_img2img(
|
82 |
+
stable_model_path:str,
|
83 |
+
image_path:str,
|
84 |
+
prompt:str,
|
85 |
+
negative_prompt:str,
|
86 |
+
num_samples:int,
|
87 |
+
guidance_scale:int,
|
88 |
+
num_inference_step:int,
|
89 |
+
):
|
90 |
+
|
91 |
+
controlnet, image = controlnet_mlsd(image_path=image_path)
|
92 |
+
|
93 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
94 |
+
pretrained_model_name_or_path=stable_model_path,
|
95 |
+
controlnet=controlnet,
|
96 |
+
safety_checker=None,
|
97 |
+
torch_dtype=torch.float16
|
98 |
+
)
|
99 |
+
|
100 |
+
pipe.to("cuda")
|
101 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
102 |
+
pipe.enable_xformers_memory_efficient_attention()
|
103 |
+
|
104 |
+
output = pipe(
|
105 |
+
prompt = prompt,
|
106 |
+
image = image,
|
107 |
+
negative_prompt = negative_prompt,
|
108 |
+
num_images_per_prompt = num_samples,
|
109 |
+
num_inference_steps = num_inference_step,
|
110 |
+
guidance_scale = guidance_scale,
|
111 |
+
).images
|
112 |
+
|
113 |
+
return output
|