Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import torch | |
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline | |
from PIL import Image | |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation | |
from diffusion_webui.utils.model_list import stable_model_list | |
from diffusion_webui.utils.scheduler_list import ( | |
SCHEDULER_LIST, | |
get_scheduler_list, | |
) | |
def ade_palette(): | |
"""ADE20K palette that maps each class to RGB values.""" | |
return [ | |
[120, 120, 120], | |
[180, 120, 120], | |
[6, 230, 230], | |
[80, 50, 50], | |
[4, 200, 3], | |
[120, 120, 80], | |
[140, 140, 140], | |
[204, 5, 255], | |
[230, 230, 230], | |
[4, 250, 7], | |
[224, 5, 255], | |
[235, 255, 7], | |
[150, 5, 61], | |
[120, 120, 70], | |
[8, 255, 51], | |
[255, 6, 82], | |
[143, 255, 140], | |
[204, 255, 4], | |
[255, 51, 7], | |
[204, 70, 3], | |
[0, 102, 200], | |
[61, 230, 250], | |
[255, 6, 51], | |
[11, 102, 255], | |
[255, 7, 71], | |
[255, 9, 224], | |
[9, 7, 230], | |
[220, 220, 220], | |
[255, 9, 92], | |
[112, 9, 255], | |
[8, 255, 214], | |
[7, 255, 224], | |
[255, 184, 6], | |
[10, 255, 71], | |
[255, 41, 10], | |
[7, 255, 255], | |
[224, 255, 8], | |
[102, 8, 255], | |
[255, 61, 6], | |
[255, 194, 7], | |
[255, 122, 8], | |
[0, 255, 20], | |
[255, 8, 41], | |
[255, 5, 153], | |
[6, 51, 255], | |
[235, 12, 255], | |
[160, 150, 20], | |
[0, 163, 255], | |
[140, 140, 140], | |
[250, 10, 15], | |
[20, 255, 0], | |
[31, 255, 0], | |
[255, 31, 0], | |
[255, 224, 0], | |
[153, 255, 0], | |
[0, 0, 255], | |
[255, 71, 0], | |
[0, 235, 255], | |
[0, 173, 255], | |
[31, 0, 255], | |
[11, 200, 200], | |
[255, 82, 0], | |
[0, 255, 245], | |
[0, 61, 255], | |
[0, 255, 112], | |
[0, 255, 133], | |
[255, 0, 0], | |
[255, 163, 0], | |
[255, 102, 0], | |
[194, 255, 0], | |
[0, 143, 255], | |
[51, 255, 0], | |
[0, 82, 255], | |
[0, 255, 41], | |
[0, 255, 173], | |
[10, 0, 255], | |
[173, 255, 0], | |
[0, 255, 153], | |
[255, 92, 0], | |
[255, 0, 255], | |
[255, 0, 245], | |
[255, 0, 102], | |
[255, 173, 0], | |
[255, 0, 20], | |
[255, 184, 184], | |
[0, 31, 255], | |
[0, 255, 61], | |
[0, 71, 255], | |
[255, 0, 204], | |
[0, 255, 194], | |
[0, 255, 82], | |
[0, 10, 255], | |
[0, 112, 255], | |
[51, 0, 255], | |
[0, 194, 255], | |
[0, 122, 255], | |
[0, 255, 163], | |
[255, 153, 0], | |
[0, 255, 10], | |
[255, 112, 0], | |
[143, 255, 0], | |
[82, 0, 255], | |
[163, 255, 0], | |
[255, 235, 0], | |
[8, 184, 170], | |
[133, 0, 255], | |
[0, 255, 92], | |
[184, 0, 255], | |
[255, 0, 31], | |
[0, 184, 255], | |
[0, 214, 255], | |
[255, 0, 112], | |
[92, 255, 0], | |
[0, 224, 255], | |
[112, 224, 255], | |
[70, 184, 160], | |
[163, 0, 255], | |
[153, 0, 255], | |
[71, 255, 0], | |
[255, 0, 163], | |
[255, 204, 0], | |
[255, 0, 143], | |
[0, 255, 235], | |
[133, 255, 0], | |
[255, 0, 235], | |
[245, 0, 255], | |
[255, 0, 122], | |
[255, 245, 0], | |
[10, 190, 212], | |
[214, 255, 0], | |
[0, 204, 255], | |
[20, 0, 255], | |
[255, 255, 0], | |
[0, 153, 255], | |
[0, 41, 255], | |
[0, 255, 204], | |
[41, 0, 255], | |
[41, 255, 0], | |
[173, 0, 255], | |
[0, 245, 255], | |
[71, 0, 255], | |
[122, 0, 255], | |
[0, 255, 184], | |
[0, 92, 255], | |
[184, 255, 0], | |
[0, 133, 255], | |
[255, 214, 0], | |
[25, 194, 194], | |
[102, 255, 0], | |
[92, 0, 255], | |
] | |
class StableDiffusionControlNetSegGenerator: | |
def __init__(self): | |
self.pipe = None | |
def load_model( | |
self, | |
stable_model_path, | |
scheduler, | |
): | |
if self.pipe is None: | |
controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16 | |
) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
pretrained_model_name_or_path=stable_model_path, | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
) | |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler) | |
self.pipe.to("cuda") | |
self.pipe.enable_xformers_memory_efficient_attention() | |
return self.pipe | |
def controlnet_seg(self, image_path: str): | |
image_processor = AutoImageProcessor.from_pretrained( | |
"openmmlab/upernet-convnext-small" | |
) | |
image_segmentor = UperNetForSemanticSegmentation.from_pretrained( | |
"openmmlab/upernet-convnext-small" | |
) | |
image = Image.open(image_path).convert("RGB") | |
pixel_values = image_processor(image, return_tensors="pt").pixel_values | |
with torch.no_grad(): | |
outputs = image_segmentor(pixel_values) | |
seg = image_processor.post_process_semantic_segmentation( | |
outputs, target_sizes=[image.size[::-1]] | |
)[0] | |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) | |
palette = np.array(ade_palette()) | |
for label, color in enumerate(palette): | |
color_seg[seg == label, :] = color | |
color_seg = color_seg.astype(np.uint8) | |
image = Image.fromarray(color_seg) | |
return image | |
def generate_image( | |
self, | |
image_path: str, | |
model_path: str, | |
prompt: str, | |
negative_prompt: str, | |
num_images_per_prompt: int, | |
guidance_scale: int, | |
num_inference_step: int, | |
scheduler: str, | |
seed_generator: int, | |
): | |
image = self.controlnet_seg(image_path=image_path) | |
pipe = self.load_model( | |
stable_model_path=model_path, | |
scheduler=scheduler, | |
) | |
if seed_generator == 0: | |
random_seed = torch.randint(0, 1000000, (1,)) | |
generator = torch.manual_seed(random_seed) | |
else: | |
generator = torch.manual_seed(seed_generator) | |
output = pipe( | |
prompt=prompt, | |
image=image, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
num_inference_steps=num_inference_step, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
).images | |
return output | |
def app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
controlnet_seg_image_file = gr.Image( | |
type="filepath", label="Image" | |
) | |
controlnet_seg_prompt = gr.Textbox( | |
lines=1, | |
show_label=False, | |
placeholder="Prompt", | |
) | |
controlnet_seg_negative_prompt = gr.Textbox( | |
lines=1, | |
show_label=False, | |
placeholder="Negative Prompt", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
controlnet_seg_model_id = gr.Dropdown( | |
choices=stable_model_list, | |
value=stable_model_list[0], | |
label="Stable Model Id", | |
) | |
controlnet_seg_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
) | |
controlnet_seg_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label="Num Inference Step", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
controlnet_seg_scheduler = gr.Dropdown( | |
choices=SCHEDULER_LIST, | |
value=SCHEDULER_LIST[0], | |
label="Scheduler", | |
) | |
controlnet_seg_num_images_per_prompt = ( | |
gr.Slider( | |
minimum=1, | |
maximum=10, | |
step=1, | |
value=1, | |
label="Number Of Images", | |
) | |
) | |
controlnet_seg_seed_generator = gr.Slider( | |
minimum=0, | |
maximum=1000000, | |
step=1, | |
value=0, | |
label="Seed Generator", | |
) | |
controlnet_seg_predict = gr.Button(value="Generator") | |
with gr.Column(): | |
output_image = gr.Gallery( | |
label="Generated images", | |
show_label=False, | |
elem_id="gallery", | |
).style(grid=(1, 2)) | |
controlnet_seg_predict.click( | |
fn=StableDiffusionControlNetSegGenerator().generate_image, | |
inputs=[ | |
controlnet_seg_image_file, | |
controlnet_seg_model_id, | |
controlnet_seg_prompt, | |
controlnet_seg_negative_prompt, | |
controlnet_seg_num_images_per_prompt, | |
controlnet_seg_guidance_scale, | |
controlnet_seg_num_inference_step, | |
controlnet_seg_scheduler, | |
controlnet_seg_seed_generator, | |
], | |
outputs=[output_image], | |
) | |