Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,205 +1,184 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
-
import random
|
4 |
-
import uuid
|
5 |
-
import json
|
6 |
-
|
7 |
import gradio as gr
|
8 |
-
import numpy as np
|
9 |
-
from PIL import Image
|
10 |
-
import spaces
|
11 |
import torch
|
12 |
-
from diffusers import
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
# CPU offloading for larger RAM capacity (experimental)
|
36 |
-
if ENABLE_CPU_OFFLOAD:
|
37 |
-
pipe.enable_model_cpu_offload()
|
38 |
-
|
39 |
-
MAX_SEED = np.iinfo(np.int32).max
|
40 |
-
|
41 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
42 |
-
if randomize_seed:
|
43 |
-
seed = random.randint(0, MAX_SEED)
|
44 |
-
return seed
|
45 |
-
|
46 |
-
@spaces.GPU()
|
47 |
-
def generate(
|
48 |
-
prompt: str,
|
49 |
-
negative_prompt: str = "",
|
50 |
-
use_negative_prompt: bool = False,
|
51 |
-
seed: int = 1,
|
52 |
-
width: int = 1024,
|
53 |
-
height: int = 1024,
|
54 |
-
guidance_scale: float = 3,
|
55 |
-
num_inference_steps: int = 30,
|
56 |
-
randomize_seed: bool = False,
|
57 |
-
use_resolution_binning: bool = True,
|
58 |
-
num_images: int = 1, # Number of images to generate
|
59 |
-
progress=gr.Progress(track_tqdm=True),
|
60 |
-
):
|
61 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
62 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
63 |
-
|
64 |
-
# Improved options handling
|
65 |
-
options = {
|
66 |
-
"prompt": [prompt] * num_images,
|
67 |
-
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
68 |
-
"width": width,
|
69 |
-
"height": height,
|
70 |
-
"guidance_scale": guidance_scale,
|
71 |
-
"num_inference_steps": num_inference_steps,
|
72 |
-
"generator": generator,
|
73 |
-
"output_type": "pil",
|
74 |
-
}
|
75 |
-
|
76 |
-
output = pipe(prompt,negative_prompt, width, height,guidance_scale,num_inference_steps)
|
77 |
-
|
78 |
-
return output
|
79 |
-
|
80 |
-
examples = [
|
81 |
-
"a cat eating a piece of cheese",
|
82 |
-
"a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
|
83 |
-
"Ironman VS Hulk, ultrarealistic",
|
84 |
-
"Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
|
85 |
-
"An alien holding a sign board containing the word 'Flash', futuristic, neonpunk",
|
86 |
-
"Kids going to school, Anime style"
|
87 |
-
]
|
88 |
-
|
89 |
-
css = '''
|
90 |
-
.gradio-container{max-width: 700px !important}
|
91 |
-
h1{text-align:center}
|
92 |
-
footer {
|
93 |
-
visibility: hidden
|
94 |
-
}
|
95 |
-
'''
|
96 |
-
|
97 |
-
with gr.Blocks(css=css) as demo:
|
98 |
-
gr.Markdown("""# Black Hole SDXL-Lightning""")
|
99 |
-
with gr.Group():
|
100 |
-
with gr.Row():
|
101 |
-
prompt = gr.Text(
|
102 |
-
label="Prompt",
|
103 |
-
show_label=False,
|
104 |
-
max_lines=1,
|
105 |
-
placeholder="Enter your prompt",
|
106 |
-
container=False,
|
107 |
-
)
|
108 |
-
run_button = gr.Button("Run", scale=0)
|
109 |
-
result = gr.Gallery(elem_id="gallery", label="Result", show_label=False)
|
110 |
-
|
111 |
-
with gr.Accordion("Advanced options", open=False):
|
112 |
-
num_images = gr.Slider(
|
113 |
-
label="Number of Images",
|
114 |
-
minimum=1,
|
115 |
-
maximum=4,
|
116 |
-
step=1,
|
117 |
-
value=1,
|
118 |
-
)
|
119 |
-
with gr.Row():
|
120 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
121 |
-
negative_prompt = gr.Text(
|
122 |
-
label="Negative prompt",
|
123 |
-
max_lines=5,
|
124 |
-
lines=4,
|
125 |
-
placeholder="Enter a negative prompt",
|
126 |
-
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
|
127 |
-
visible=True,
|
128 |
)
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
)
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
with gr.Row():
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
step=0.1,
|
158 |
-
value=3.0,
|
159 |
-
)
|
160 |
-
num_inference_steps = gr.Slider(
|
161 |
-
label="Number of inference steps",
|
162 |
-
minimum=1,
|
163 |
-
maximum=15,
|
164 |
-
step=1,
|
165 |
-
value=4,
|
166 |
-
)
|
167 |
|
168 |
-
gr.Examples(
|
169 |
-
examples=examples,
|
170 |
-
inputs=prompt,
|
171 |
-
cache_examples=False
|
172 |
-
)
|
173 |
-
|
174 |
-
use_negative_prompt.change(
|
175 |
-
fn=lambda x: gr.update(visible=x),
|
176 |
-
inputs=use_negative_prompt,
|
177 |
-
outputs=negative_prompt,
|
178 |
-
api_name=False,
|
179 |
-
)
|
180 |
-
|
181 |
-
gr.on(
|
182 |
-
triggers=[
|
183 |
-
prompt.submit,
|
184 |
-
negative_prompt.submit,
|
185 |
-
run_button.click,
|
186 |
-
],
|
187 |
-
fn=generate,
|
188 |
-
inputs=[
|
189 |
-
prompt,
|
190 |
-
negative_prompt,
|
191 |
-
use_negative_prompt,
|
192 |
-
seed,
|
193 |
-
width,
|
194 |
-
height,
|
195 |
-
guidance_scale,
|
196 |
-
num_inference_steps,
|
197 |
-
randomize_seed,
|
198 |
-
num_images
|
199 |
-
],
|
200 |
-
outputs=[result, seed],
|
201 |
-
api_name="run",
|
202 |
-
)
|
203 |
|
204 |
if __name__ == "__main__":
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionPipeline
|
4 |
+
|
5 |
+
from diffusion_webui.utils.model_list import stable_model_list
|
6 |
+
from diffusion_webui.utils.scheduler_list import (
|
7 |
+
SCHEDULER_MAPPING,
|
8 |
+
get_scheduler,
|
9 |
+
)
|
10 |
+
import spaces
|
11 |
+
|
12 |
+
|
13 |
+
class StableDiffusionText2ImageGenerator:
|
14 |
+
def __init__(self):
|
15 |
+
self.pipe = None
|
16 |
+
|
17 |
+
def load_model(
|
18 |
+
self,
|
19 |
+
model_path,
|
20 |
+
scheduler,
|
21 |
+
):
|
22 |
+
if self.pipe is None:
|
23 |
+
self.pipe = StableDiffusionPipeline.from_pretrained(
|
24 |
+
model_path, safety_checker=None, torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
)
|
26 |
+
|
27 |
+
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
|
28 |
+
self.pipe.to("cuda")
|
29 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
30 |
+
|
31 |
+
return self.pipe
|
32 |
+
|
33 |
+
@spaces.GPU()
|
34 |
+
def generate_image(
|
35 |
+
self,
|
36 |
+
model_path: str,
|
37 |
+
prompt: str,
|
38 |
+
negative_prompt: str,
|
39 |
+
num_images_per_prompt: int,
|
40 |
+
scheduler: str,
|
41 |
+
guidance_scale: int,
|
42 |
+
num_inference_step: int,
|
43 |
+
height: int,
|
44 |
+
width: int,
|
45 |
+
seed_generator=0,
|
46 |
+
):
|
47 |
+
pipe = self.load_model(
|
48 |
+
model_path=model_path,
|
49 |
+
scheduler=scheduler,
|
50 |
)
|
51 |
+
if seed_generator == 0:
|
52 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
53 |
+
generator = torch.manual_seed(random_seed)
|
54 |
+
else:
|
55 |
+
generator = torch.manual_seed(seed_generator)
|
56 |
+
|
57 |
+
images = pipe(
|
58 |
+
prompt=prompt,
|
59 |
+
height=height,
|
60 |
+
width=width,
|
61 |
+
negative_prompt=negative_prompt,
|
62 |
+
num_images_per_prompt=num_images_per_prompt,
|
63 |
+
num_inference_steps=num_inference_step,
|
64 |
+
guidance_scale=guidance_scale,
|
65 |
+
generator=generator,
|
66 |
+
).images
|
67 |
+
|
68 |
+
return images
|
69 |
+
|
70 |
+
def app():
|
71 |
+
with gr.Blocks():
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column():
|
74 |
+
text2image_prompt = gr.Textbox(
|
75 |
+
lines=1,
|
76 |
+
placeholder="Prompt",
|
77 |
+
show_label=False,
|
78 |
+
)
|
79 |
+
|
80 |
+
text2image_negative_prompt = gr.Textbox(
|
81 |
+
lines=1,
|
82 |
+
placeholder="Negative Prompt",
|
83 |
+
show_label=False,
|
84 |
+
)
|
85 |
+
with gr.Row():
|
86 |
+
with gr.Column():
|
87 |
+
text2image_model_path = gr.Dropdown(
|
88 |
+
choices=stable_model_list,
|
89 |
+
value=stable_model_list[0],
|
90 |
+
label="Text-Image Model Id",
|
91 |
+
)
|
92 |
+
|
93 |
+
text2image_guidance_scale = gr.Slider(
|
94 |
+
minimum=0.1,
|
95 |
+
maximum=15,
|
96 |
+
step=0.1,
|
97 |
+
value=7.5,
|
98 |
+
label="Guidance Scale",
|
99 |
+
)
|
100 |
+
|
101 |
+
text2image_num_inference_step = gr.Slider(
|
102 |
+
minimum=1,
|
103 |
+
maximum=100,
|
104 |
+
step=1,
|
105 |
+
value=50,
|
106 |
+
label="Num Inference Step",
|
107 |
+
)
|
108 |
+
text2image_num_images_per_prompt = gr.Slider(
|
109 |
+
minimum=1,
|
110 |
+
maximum=30,
|
111 |
+
step=1,
|
112 |
+
value=1,
|
113 |
+
label="Number Of Images",
|
114 |
+
)
|
115 |
+
with gr.Row():
|
116 |
+
with gr.Column():
|
117 |
+
text2image_scheduler = gr.Dropdown(
|
118 |
+
choices=list(SCHEDULER_MAPPING.keys()),
|
119 |
+
value=list(SCHEDULER_MAPPING.keys())[0],
|
120 |
+
label="Scheduler",
|
121 |
+
)
|
122 |
+
|
123 |
+
text2image_height = gr.Slider(
|
124 |
+
minimum=128,
|
125 |
+
maximum=1280,
|
126 |
+
step=32,
|
127 |
+
value=512,
|
128 |
+
label="Image Height",
|
129 |
+
)
|
130 |
+
|
131 |
+
text2image_width = gr.Slider(
|
132 |
+
minimum=128,
|
133 |
+
maximum=1280,
|
134 |
+
step=32,
|
135 |
+
value=512,
|
136 |
+
label="Image Width",
|
137 |
+
)
|
138 |
+
text2image_seed_generator = gr.Slider(
|
139 |
+
label="Seed(0 for random)",
|
140 |
+
minimum=0,
|
141 |
+
maximum=1000000,
|
142 |
+
value=0,
|
143 |
+
)
|
144 |
+
text2image_predict = gr.Button(value="Generator")
|
145 |
+
|
146 |
+
with gr.Column():
|
147 |
+
output_image = gr.Gallery(
|
148 |
+
label="Generated images",
|
149 |
+
show_label=False,
|
150 |
+
elem_id="gallery",
|
151 |
+
).style(grid=(1, 2), height=200)
|
152 |
+
|
153 |
+
text2image_predict.click(
|
154 |
+
fn=StableDiffusionText2ImageGenerator().generate_image,
|
155 |
+
inputs=[
|
156 |
+
text2image_model_path,
|
157 |
+
text2image_prompt,
|
158 |
+
text2image_negative_prompt,
|
159 |
+
text2image_num_images_per_prompt,
|
160 |
+
text2image_scheduler,
|
161 |
+
text2image_guidance_scale,
|
162 |
+
text2image_num_inference_step,
|
163 |
+
text2image_height,
|
164 |
+
text2image_width,
|
165 |
+
text2image_seed_generator,
|
166 |
+
],
|
167 |
+
outputs=output_image,
|
168 |
)
|
169 |
+
|
170 |
+
import gradio as gr
|
171 |
+
|
172 |
+
|
173 |
+
def diffusion_app():
|
174 |
+
app = gr.Blocks()
|
175 |
+
with app:
|
176 |
with gr.Row():
|
177 |
+
with gr.Column():
|
178 |
+
StableDiffusionText2ImageGenerator.app()
|
179 |
+
|
180 |
+
app.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
if __name__ == "__main__":
|
184 |
+
diffusion_app()
|