Spaces:
Sleeping
Sleeping
rewrite
Browse files
app.py
CHANGED
|
@@ -1,13 +1,10 @@
|
|
| 1 |
-
# app.py
|
| 2 |
import os
|
| 3 |
import uuid
|
| 4 |
import time
|
| 5 |
import json
|
| 6 |
import requests
|
| 7 |
import gradio as gr
|
| 8 |
-
|
| 9 |
-
# ========= Helpers & Context =========
|
| 10 |
-
# Ensure your local utils module exposes: session_id, retrieve_context, log_interaction_hf, upload_log_to_hf
|
| 11 |
import utils.helpers as helpers
|
| 12 |
from utils.helpers import retrieve_context, log_interaction_hf, upload_log_to_hf
|
| 13 |
|
|
@@ -15,57 +12,36 @@ from utils.helpers import retrieve_context, log_interaction_hf, upload_log_to_hf
|
|
| 15 |
with open("config.json") as f:
|
| 16 |
config = json.load(f)
|
| 17 |
|
| 18 |
-
DO_API_KEY = config["do_token"]
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Stable session id for the whole app lifetime so logs land under a unique folder
|
| 22 |
session_id = f"{int(time.time())}-{uuid.uuid4().hex[:8]}"
|
| 23 |
-
helpers.session_id = session_id
|
| 24 |
-
|
| 25 |
BASE_URL = "https://inference.do-ai.run/v1"
|
| 26 |
-
UPLOAD_INTERVAL = 5
|
| 27 |
-
REQUEST_TIMEOUT = 60
|
| 28 |
-
STREAM_TIMEOUT = 120
|
| 29 |
|
| 30 |
-
# =========
|
| 31 |
def _auth_headers():
|
| 32 |
-
return {
|
| 33 |
-
"Authorization": f"Bearer {DO_API_KEY}",
|
| 34 |
-
"Content-Type": "application/json",
|
| 35 |
-
"Accept": "application/json",
|
| 36 |
-
}
|
| 37 |
|
| 38 |
def list_models():
|
| 39 |
-
"""
|
| 40 |
-
Fetch live model IDs from DO; fall back to a deterministic default on failure.
|
| 41 |
-
Always return a non-empty list.
|
| 42 |
-
"""
|
| 43 |
try:
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
data =
|
| 47 |
-
ids = [m
|
| 48 |
if ids:
|
| 49 |
return ids
|
| 50 |
except Exception as e:
|
| 51 |
print(f"⚠️ list_models failed: {e}")
|
| 52 |
-
# Deterministic fallback
|
| 53 |
return ["llama3.3-70b-instruct"]
|
| 54 |
|
| 55 |
-
def _normalize_model_id(model_id: str | None) -> str:
|
| 56 |
-
if model_id:
|
| 57 |
-
return model_id
|
| 58 |
-
return list_models()[0]
|
| 59 |
-
|
| 60 |
-
# ========= Inference (non-stream + stream) =========
|
| 61 |
def gradient_request(model_id, prompt, max_tokens=512, temperature=0.7, top_p=0.95):
|
| 62 |
-
"""
|
| 63 |
-
Non-streaming completion (used by lightweight tasks like intent detection).
|
| 64 |
-
Self-heals if model_id is not found by retrying with the first available model.
|
| 65 |
-
"""
|
| 66 |
url = f"{BASE_URL}/chat/completions"
|
|
|
|
|
|
|
| 67 |
payload = {
|
| 68 |
-
"model":
|
| 69 |
"messages": [{"role": "user", "content": prompt}],
|
| 70 |
"max_tokens": max_tokens,
|
| 71 |
"temperature": temperature,
|
|
@@ -73,42 +49,39 @@ def gradient_request(model_id, prompt, max_tokens=512, temperature=0.7, top_p=0.
|
|
| 73 |
}
|
| 74 |
for attempt in range(3):
|
| 75 |
try:
|
| 76 |
-
resp = requests.post(url, headers=_auth_headers(), json=payload, timeout=
|
| 77 |
if resp.status_code == 404:
|
| 78 |
-
# Model not found → pick first available model and retry once
|
| 79 |
ids = list_models()
|
| 80 |
-
if
|
| 81 |
payload["model"] = ids[0]
|
| 82 |
continue
|
| 83 |
resp.raise_for_status()
|
| 84 |
j = resp.json()
|
| 85 |
return j["choices"][0]["message"]["content"].strip()
|
| 86 |
except requests.HTTPError as e:
|
| 87 |
-
|
| 88 |
-
raise RuntimeError(f"Inference error ({e.response.status_code}): {
|
| 89 |
except requests.RequestException as e:
|
| 90 |
if attempt == 2:
|
| 91 |
raise
|
| 92 |
-
time.sleep(0.5)
|
| 93 |
raise RuntimeError("Exhausted retries")
|
| 94 |
|
| 95 |
def gradient_stream(model_id, prompt, max_tokens=512, temperature=0.7, top_p=0.95):
|
| 96 |
-
"""
|
| 97 |
-
Streaming generator yielding content chunks.
|
| 98 |
-
Emits keepalives if the server is quiet for >3s.
|
| 99 |
-
"""
|
| 100 |
url = f"{BASE_URL}/chat/completions"
|
|
|
|
|
|
|
| 101 |
payload = {
|
| 102 |
-
"model":
|
| 103 |
"messages": [{"role": "user", "content": prompt}],
|
| 104 |
"max_tokens": max_tokens,
|
| 105 |
"temperature": temperature,
|
| 106 |
"top_p": top_p,
|
| 107 |
"stream": True,
|
| 108 |
}
|
| 109 |
-
|
|
|
|
| 110 |
try:
|
| 111 |
-
with requests.post(url, headers=_auth_headers(), json=payload, stream=True, timeout=
|
| 112 |
if r.status_code != 200:
|
| 113 |
try:
|
| 114 |
err_txt = r.text
|
|
@@ -116,40 +89,39 @@ def gradient_stream(model_id, prompt, max_tokens=512, temperature=0.7, top_p=0.9
|
|
| 116 |
err_txt = "<no body>"
|
| 117 |
raise RuntimeError(f"HTTP {r.status_code}: {err_txt}")
|
| 118 |
|
| 119 |
-
|
| 120 |
-
for
|
| 121 |
-
if
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
continue
|
| 140 |
except Exception as e:
|
| 141 |
-
raise
|
| 142 |
|
| 143 |
def gradient_complete(model_id, prompt, max_tokens=512, temperature=0.7, top_p=0.95):
|
| 144 |
url = f"{BASE_URL}/chat/completions"
|
| 145 |
payload = {
|
| 146 |
-
"model":
|
| 147 |
"messages": [{"role": "user", "content": prompt}],
|
| 148 |
"max_tokens": max_tokens,
|
| 149 |
"temperature": temperature,
|
| 150 |
"top_p": top_p,
|
| 151 |
}
|
| 152 |
-
r = requests.post(url, headers=_auth_headers(), json=payload, timeout=
|
| 153 |
if r.status_code != 200:
|
| 154 |
raise RuntimeError(f"HTTP {r.status_code}: {r.text}")
|
| 155 |
j = r.json()
|
|
@@ -157,10 +129,6 @@ def gradient_complete(model_id, prompt, max_tokens=512, temperature=0.7, top_p=0
|
|
| 157 |
|
| 158 |
# ========= Lightweight Intent Detection =========
|
| 159 |
def detect_intent(model_id, message: str) -> str:
|
| 160 |
-
"""
|
| 161 |
-
Classify as 'small_talk' or 'info_query'.
|
| 162 |
-
Fail-open to 'info_query' on any issue.
|
| 163 |
-
"""
|
| 164 |
try:
|
| 165 |
out = gradient_request(
|
| 166 |
model_id,
|
|
@@ -174,26 +142,28 @@ def detect_intent(model_id, message: str) -> str:
|
|
| 174 |
print(f"⚠️ detect_intent failed: {e}")
|
| 175 |
return "info_query"
|
| 176 |
|
| 177 |
-
# ========= Gradio
|
| 178 |
with gr.Blocks(title="Gradient AI Chat") as demo:
|
|
|
|
| 179 |
turn_counter = gr.State(0)
|
| 180 |
|
| 181 |
gr.Markdown("## Gradient AI Chat")
|
| 182 |
gr.Markdown("Select a model and ask your question.")
|
| 183 |
|
|
|
|
| 184 |
with gr.Row():
|
| 185 |
model_drop = gr.Dropdown(choices=[], label="Select Model")
|
| 186 |
system_msg = gr.Textbox(
|
| 187 |
-
value="You are a faithful assistant.
|
| 188 |
label="System message"
|
| 189 |
)
|
| 190 |
|
| 191 |
with gr.Row():
|
| 192 |
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
|
| 193 |
temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
| 194 |
-
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top
|
| 195 |
|
| 196 |
-
#
|
| 197 |
chatbot = gr.Chatbot(height=500, type="tuples")
|
| 198 |
msg = gr.Textbox(label="Your message")
|
| 199 |
|
|
@@ -213,8 +183,8 @@ with gr.Blocks(title="Gradient AI Chat") as demo:
|
|
| 213 |
# --- Load models into dropdown at startup
|
| 214 |
def load_models():
|
| 215 |
ids = list_models()
|
| 216 |
-
|
| 217 |
-
return gr.Dropdown.update(choices=ids, value=
|
| 218 |
|
| 219 |
demo.load(load_models, outputs=[model_drop])
|
| 220 |
|
|
@@ -229,87 +199,70 @@ with gr.Blocks(title="Gradient AI Chat") as demo:
|
|
| 229 |
|
| 230 |
# --- Event handlers
|
| 231 |
def user(user_message, chat_history):
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
chat_history = list(chat_history) + [(user_message, "")]
|
| 235 |
-
return "", chat_history
|
| 236 |
|
| 237 |
def bot(chat_history, current_turn_count, model_id, system_message, max_tokens, temperature, top_p):
|
| 238 |
-
"""
|
| 239 |
-
Single, clean streaming pass. Replace tuples; never mutate in place.
|
| 240 |
-
"""
|
| 241 |
-
if not chat_history:
|
| 242 |
-
# Shouldn't happen, but stay defensive
|
| 243 |
-
yield chat_history, (current_turn_count or 0)
|
| 244 |
-
return
|
| 245 |
-
|
| 246 |
user_message = chat_history[-1][0]
|
| 247 |
|
| 248 |
-
#
|
| 249 |
intent = detect_intent(model_id, user_message)
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
if intent != "small_talk":
|
| 254 |
try:
|
| 255 |
-
context = retrieve_context(user_message, p=5, threshold=0.5)
|
| 256 |
except Exception as e:
|
| 257 |
print(f"⚠️ retrieve_context failed: {e}")
|
| 258 |
context = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
if context.strip():
|
| 264 |
-
full_prompt = (
|
| 265 |
-
f"[System]: {system_message}\n"
|
| 266 |
-
"Use the provided context verbatim; if context is insufficient, answer directly.\n\n"
|
| 267 |
-
f"Context:\n{context}\n\nQuestion: {user_message}\n"
|
| 268 |
-
)
|
| 269 |
-
else:
|
| 270 |
-
# No context → do not block the model
|
| 271 |
-
full_prompt = f"[System]: {system_message}\nQuestion: {user_message}\n"
|
| 272 |
-
|
| 273 |
-
# Seed assistant bubble (replace tuple, don’t mutate)
|
| 274 |
-
chat_history = list(chat_history)
|
| 275 |
-
chat_history[-1] = (chat_history[-1][0], "")
|
| 276 |
-
yield chat_history, (current_turn_count or 0)
|
| 277 |
|
| 278 |
-
#
|
| 279 |
try:
|
| 280 |
received_any = False
|
| 281 |
-
buffer = ""
|
| 282 |
-
|
| 283 |
for token in gradient_stream(model_id, full_prompt, max_tokens, temperature, top_p):
|
| 284 |
-
if token:
|
| 285 |
received_any = True
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
if not received_any:
|
| 291 |
-
|
| 292 |
-
chat_history[-1] = (chat_history[-1][0], text)
|
| 293 |
-
yield chat_history, (current_turn_count or 0)
|
| 294 |
-
|
| 295 |
except Exception as e:
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
try:
|
| 302 |
log_interaction_hf(user_message, chat_history[-1][1])
|
| 303 |
except Exception as e:
|
| 304 |
print(f"⚠️ log_interaction_hf failed: {e}")
|
| 305 |
|
| 306 |
new_turn_count = (current_turn_count or 0) + 1
|
|
|
|
| 307 |
if new_turn_count % UPLOAD_INTERVAL == 0:
|
| 308 |
try:
|
| 309 |
-
upload_log_to_hf(HF_TOKEN)
|
| 310 |
except Exception as e:
|
| 311 |
print(f"❌ Log upload failed: {e}")
|
| 312 |
|
|
|
|
| 313 |
yield chat_history, new_turn_count
|
| 314 |
|
| 315 |
# Wiring (streaming generators supported)
|
|
@@ -339,4 +292,4 @@ with gr.Blocks(title="Gradient AI Chat") as demo:
|
|
| 339 |
|
| 340 |
if __name__ == "__main__":
|
| 341 |
# On HF Spaces, don't use share=True. Also disable API page to avoid schema churn.
|
| 342 |
-
demo.launch(show_api=False)
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import uuid
|
| 3 |
import time
|
| 4 |
import json
|
| 5 |
import requests
|
| 6 |
import gradio as gr
|
| 7 |
+
import time
|
|
|
|
|
|
|
| 8 |
import utils.helpers as helpers
|
| 9 |
from utils.helpers import retrieve_context, log_interaction_hf, upload_log_to_hf
|
| 10 |
|
|
|
|
| 12 |
with open("config.json") as f:
|
| 13 |
config = json.load(f)
|
| 14 |
|
| 15 |
+
DO_API_KEY = config["do_token"]
|
| 16 |
+
token_ = config['token']
|
| 17 |
+
HF_TOKEN = 'hf_' + token_
|
|
|
|
| 18 |
session_id = f"{int(time.time())}-{uuid.uuid4().hex[:8]}"
|
| 19 |
+
helpers.session_id = session_id
|
|
|
|
| 20 |
BASE_URL = "https://inference.do-ai.run/v1"
|
| 21 |
+
UPLOAD_INTERVAL = 5
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# ========= Inference Utilities =========
|
| 24 |
def _auth_headers():
|
| 25 |
+
return {"Authorization": f"Bearer {DO_API_KEY}", "Content-Type": "application/json"}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
def list_models():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
try:
|
| 29 |
+
r = requests.get(f"{BASE_URL}/models", headers=_auth_headers(), timeout=15)
|
| 30 |
+
r.raise_for_status()
|
| 31 |
+
data = r.json().get("data", [])
|
| 32 |
+
ids = [m["id"] for m in data]
|
| 33 |
if ids:
|
| 34 |
return ids
|
| 35 |
except Exception as e:
|
| 36 |
print(f"⚠️ list_models failed: {e}")
|
|
|
|
| 37 |
return ["llama3.3-70b-instruct"]
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def gradient_request(model_id, prompt, max_tokens=512, temperature=0.7, top_p=0.95):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
url = f"{BASE_URL}/chat/completions"
|
| 41 |
+
if not model_id:
|
| 42 |
+
model_id = list_models()[0]
|
| 43 |
payload = {
|
| 44 |
+
"model": model_id,
|
| 45 |
"messages": [{"role": "user", "content": prompt}],
|
| 46 |
"max_tokens": max_tokens,
|
| 47 |
"temperature": temperature,
|
|
|
|
| 49 |
}
|
| 50 |
for attempt in range(3):
|
| 51 |
try:
|
| 52 |
+
resp = requests.post(url, headers=_auth_headers(), json=payload, timeout=30)
|
| 53 |
if resp.status_code == 404:
|
|
|
|
| 54 |
ids = list_models()
|
| 55 |
+
if model_id not in ids and ids:
|
| 56 |
payload["model"] = ids[0]
|
| 57 |
continue
|
| 58 |
resp.raise_for_status()
|
| 59 |
j = resp.json()
|
| 60 |
return j["choices"][0]["message"]["content"].strip()
|
| 61 |
except requests.HTTPError as e:
|
| 62 |
+
msg = getattr(e.response, "text", str(e))
|
| 63 |
+
raise RuntimeError(f"Inference error ({e.response.status_code}): {msg}") from e
|
| 64 |
except requests.RequestException as e:
|
| 65 |
if attempt == 2:
|
| 66 |
raise
|
|
|
|
| 67 |
raise RuntimeError("Exhausted retries")
|
| 68 |
|
| 69 |
def gradient_stream(model_id, prompt, max_tokens=512, temperature=0.7, top_p=0.95):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
url = f"{BASE_URL}/chat/completions"
|
| 71 |
+
if not model_id:
|
| 72 |
+
model_id = list_models()[0]
|
| 73 |
payload = {
|
| 74 |
+
"model": model_id,
|
| 75 |
"messages": [{"role": "user", "content": prompt}],
|
| 76 |
"max_tokens": max_tokens,
|
| 77 |
"temperature": temperature,
|
| 78 |
"top_p": top_p,
|
| 79 |
"stream": True,
|
| 80 |
}
|
| 81 |
+
|
| 82 |
+
# Create a generator that yields tokens
|
| 83 |
try:
|
| 84 |
+
with requests.post(url, headers=_auth_headers(), json=payload, stream=True, timeout=120) as r:
|
| 85 |
if r.status_code != 200:
|
| 86 |
try:
|
| 87 |
err_txt = r.text
|
|
|
|
| 89 |
err_txt = "<no body>"
|
| 90 |
raise RuntimeError(f"HTTP {r.status_code}: {err_txt}")
|
| 91 |
|
| 92 |
+
buffer = ""
|
| 93 |
+
for line in r.iter_lines():
|
| 94 |
+
if line:
|
| 95 |
+
decoded_line = line.decode('utf-8')
|
| 96 |
+
if decoded_line.startswith('data:'):
|
| 97 |
+
data = decoded_line[5:].strip()
|
| 98 |
+
if data == '[DONE]':
|
| 99 |
+
break
|
| 100 |
+
try:
|
| 101 |
+
json_data = json.loads(data)
|
| 102 |
+
if 'choices' in json_data:
|
| 103 |
+
for choice in json_data['choices']:
|
| 104 |
+
if 'delta' in choice and 'content' in choice['delta']:
|
| 105 |
+
content = choice['delta']['content']
|
| 106 |
+
buffer += content
|
| 107 |
+
yield content
|
| 108 |
+
except json.JSONDecodeError:
|
| 109 |
+
continue
|
| 110 |
+
if not buffer:
|
| 111 |
+
yield "No response received from the model."
|
|
|
|
| 112 |
except Exception as e:
|
| 113 |
+
raise RuntimeError(f"Streaming error: {str(e)}")
|
| 114 |
|
| 115 |
def gradient_complete(model_id, prompt, max_tokens=512, temperature=0.7, top_p=0.95):
|
| 116 |
url = f"{BASE_URL}/chat/completions"
|
| 117 |
payload = {
|
| 118 |
+
"model": model_id,
|
| 119 |
"messages": [{"role": "user", "content": prompt}],
|
| 120 |
"max_tokens": max_tokens,
|
| 121 |
"temperature": temperature,
|
| 122 |
"top_p": top_p,
|
| 123 |
}
|
| 124 |
+
r = requests.post(url, headers=_auth_headers(), json=payload, timeout=60)
|
| 125 |
if r.status_code != 200:
|
| 126 |
raise RuntimeError(f"HTTP {r.status_code}: {r.text}")
|
| 127 |
j = r.json()
|
|
|
|
| 129 |
|
| 130 |
# ========= Lightweight Intent Detection =========
|
| 131 |
def detect_intent(model_id, message: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
try:
|
| 133 |
out = gradient_request(
|
| 134 |
model_id,
|
|
|
|
| 142 |
print(f"⚠️ detect_intent failed: {e}")
|
| 143 |
return "info_query"
|
| 144 |
|
| 145 |
+
# ========= App Logic (Gradio Blocks) =========
|
| 146 |
with gr.Blocks(title="Gradient AI Chat") as demo:
|
| 147 |
+
# Keep a reactive turn counter in session state
|
| 148 |
turn_counter = gr.State(0)
|
| 149 |
|
| 150 |
gr.Markdown("## Gradient AI Chat")
|
| 151 |
gr.Markdown("Select a model and ask your question.")
|
| 152 |
|
| 153 |
+
# Model dropdown will be populated at runtime with live IDs
|
| 154 |
with gr.Row():
|
| 155 |
model_drop = gr.Dropdown(choices=[], label="Select Model")
|
| 156 |
system_msg = gr.Textbox(
|
| 157 |
+
value="You are a faithful assistant. Use only the provided context.",
|
| 158 |
label="System message"
|
| 159 |
)
|
| 160 |
|
| 161 |
with gr.Row():
|
| 162 |
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
|
| 163 |
temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
| 164 |
+
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
| 165 |
|
| 166 |
+
# Use tuples to silence deprecation warning in current Gradio
|
| 167 |
chatbot = gr.Chatbot(height=500, type="tuples")
|
| 168 |
msg = gr.Textbox(label="Your message")
|
| 169 |
|
|
|
|
| 183 |
# --- Load models into dropdown at startup
|
| 184 |
def load_models():
|
| 185 |
ids = list_models()
|
| 186 |
+
default = ids[0] if ids else None
|
| 187 |
+
return gr.Dropdown.update(choices=ids, value=default)
|
| 188 |
|
| 189 |
demo.load(load_models, outputs=[model_drop])
|
| 190 |
|
|
|
|
| 199 |
|
| 200 |
# --- Event handlers
|
| 201 |
def user(user_message, chat_history):
|
| 202 |
+
# Seed a new assistant message for streaming
|
| 203 |
+
return "", (chat_history + [[user_message, ""]])
|
|
|
|
|
|
|
| 204 |
|
| 205 |
def bot(chat_history, current_turn_count, model_id, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
user_message = chat_history[-1][0]
|
| 207 |
|
| 208 |
+
# Build prompt
|
| 209 |
intent = detect_intent(model_id, user_message)
|
| 210 |
+
if intent == "small_talk":
|
| 211 |
+
full_prompt = f"[System]: Friendly chat.\n[User]: {user_message}\n[Assistant]: "
|
| 212 |
+
else:
|
|
|
|
| 213 |
try:
|
| 214 |
+
context = retrieve_context(user_message, p=5, threshold=0.5)
|
| 215 |
except Exception as e:
|
| 216 |
print(f"⚠️ retrieve_context failed: {e}")
|
| 217 |
context = ""
|
| 218 |
+
full_prompt = (
|
| 219 |
+
f"[System]: {system_message}\n"
|
| 220 |
+
"Use only the provided context. Quote verbatim; no inference.\n\n"
|
| 221 |
+
f"Context:\n{context}\n\nQuestion: {user_message}\n"
|
| 222 |
+
)
|
| 223 |
|
| 224 |
+
# Initialize assistant message to empty string and update chat history
|
| 225 |
+
chat_history[-1][1] = ""
|
| 226 |
+
yield chat_history, current_turn_count
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
# Attempt to stream the response
|
| 229 |
try:
|
| 230 |
received_any = False
|
|
|
|
|
|
|
| 231 |
for token in gradient_stream(model_id, full_prompt, max_tokens, temperature, top_p):
|
| 232 |
+
if token: # Skip empty tokens
|
| 233 |
received_any = True
|
| 234 |
+
chat_history[-1][1] += token
|
| 235 |
+
yield chat_history, current_turn_count
|
| 236 |
+
# If we didn't receive any tokens, fall back to non-streaming
|
|
|
|
| 237 |
if not received_any:
|
| 238 |
+
raise RuntimeError("Streaming returned no tokens; falling back.")
|
|
|
|
|
|
|
|
|
|
| 239 |
except Exception as e:
|
| 240 |
+
print(f"⚠️ Streaming failed: {e}")
|
| 241 |
+
try:
|
| 242 |
+
# Fall back to non-streaming
|
| 243 |
+
response = gradient_complete(model_id, full_prompt, max_tokens, temperature, top_p)
|
| 244 |
+
chat_history[-1][1] = response
|
| 245 |
+
yield chat_history, current_turn_count
|
| 246 |
+
except Exception as e2:
|
| 247 |
+
chat_history[-1][1] = f"⚠️ Inference failed: {e2}"
|
| 248 |
+
yield chat_history, current_turn_count
|
| 249 |
+
return
|
| 250 |
+
|
| 251 |
+
# After successful response, log and update turn counter
|
| 252 |
try:
|
| 253 |
log_interaction_hf(user_message, chat_history[-1][1])
|
| 254 |
except Exception as e:
|
| 255 |
print(f"⚠️ log_interaction_hf failed: {e}")
|
| 256 |
|
| 257 |
new_turn_count = (current_turn_count or 0) + 1
|
| 258 |
+
# Periodically upload logs
|
| 259 |
if new_turn_count % UPLOAD_INTERVAL == 0:
|
| 260 |
try:
|
| 261 |
+
upload_log_to_hf(HF_TOKEN)
|
| 262 |
except Exception as e:
|
| 263 |
print(f"❌ Log upload failed: {e}")
|
| 264 |
|
| 265 |
+
# Update the state with the new turn count
|
| 266 |
yield chat_history, new_turn_count
|
| 267 |
|
| 268 |
# Wiring (streaming generators supported)
|
|
|
|
| 292 |
|
| 293 |
if __name__ == "__main__":
|
| 294 |
# On HF Spaces, don't use share=True. Also disable API page to avoid schema churn.
|
| 295 |
+
demo.launch(show_api=False)
|