|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
if system_message is None: |
|
system_message = "I'm here to help you unwind. Let's take a deep breath together." |
|
else: |
|
system_message = "You are a good listener. You advise relaxation exercises, suggest avoiding negative thoughts, and guide through steps to manage stress. Let's discuss what's on your mind, or ask me for a quick relaxation exercise." |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="Remember to breathe deeply. Avoid fixating on unhelpful thoughts.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
examples=[ |
|
["I feel overwhelmed with work."], |
|
["Can you guide me through a quick meditation?"], |
|
["How do I stop worrying about things I can't control?"] |
|
], |
|
title="Calm Mate" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|