Spaces:
Sleeping
Sleeping
Yusuf
commited on
Commit
·
ed657fc
1
Parent(s):
84cfdfc
per class accuracy
Browse files
dataPrep/helpers/transforms_loaders.py
CHANGED
|
@@ -103,13 +103,15 @@ def make_dataset_loaders(dataset, seed, batch_size, test_size, aug_config, worke
|
|
| 103 |
pin_memory=True,
|
| 104 |
num_workers=workers
|
| 105 |
)
|
|
|
|
| 106 |
|
| 107 |
print(f"\nWorkers used in DataLoaders: {workers}\n")
|
| 108 |
|
| 109 |
dataset_loaders = {
|
| 110 |
"train": train_loader,
|
| 111 |
"val": val_loader,
|
| 112 |
-
"test": test_loader
|
|
|
|
| 113 |
}
|
| 114 |
|
| 115 |
return dataset_loaders
|
|
|
|
| 103 |
pin_memory=True,
|
| 104 |
num_workers=workers
|
| 105 |
)
|
| 106 |
+
class_names = dataset.features['label'].names
|
| 107 |
|
| 108 |
print(f"\nWorkers used in DataLoaders: {workers}\n")
|
| 109 |
|
| 110 |
dataset_loaders = {
|
| 111 |
"train": train_loader,
|
| 112 |
"val": val_loader,
|
| 113 |
+
"test": test_loader,
|
| 114 |
+
"classNames": class_names
|
| 115 |
}
|
| 116 |
|
| 117 |
return dataset_loaders
|
testingModel/helpers/evaluation.py
CHANGED
|
@@ -1,43 +1,88 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from torch.nn import CrossEntropyLoss
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn import CrossEntropyLoss
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
"""
|
| 8 |
+
Evaluates a trained model on a dataloader that returns batches like:
|
| 9 |
+
batch["image"] -> Tensor [B, 3, 256, 256]
|
| 10 |
+
batch["label"] -> Tensor [B]
|
| 11 |
+
"""
|
| 12 |
+
def make_predictions(model, dataloader, device):
|
| 13 |
+
|
| 14 |
+
model.eval()
|
| 15 |
+
criterion = CrossEntropyLoss()
|
| 16 |
+
|
| 17 |
+
total_loss = 0
|
| 18 |
+
total_correct = 0
|
| 19 |
+
total_samples = 0
|
| 20 |
+
|
| 21 |
+
all_preds = []
|
| 22 |
+
all_labels = []
|
| 23 |
+
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
for batch in dataloader:
|
| 26 |
+
|
| 27 |
+
# Move tensors to device
|
| 28 |
+
images = batch["image"].to(device)
|
| 29 |
+
labels = batch["label"].to(device).long()
|
| 30 |
+
|
| 31 |
+
# Forward pass
|
| 32 |
+
outputs = model(images)
|
| 33 |
+
loss = criterion(outputs, labels)
|
| 34 |
+
preds = outputs.argmax(dim=1)
|
| 35 |
+
|
| 36 |
+
total_loss += loss.item() * images.size(0)
|
| 37 |
+
total_correct += (preds == labels).sum().item()
|
| 38 |
+
total_samples += labels.size(0)
|
| 39 |
+
|
| 40 |
+
# Accumulate all predictions and labels
|
| 41 |
+
all_preds.extend(preds.tolist())
|
| 42 |
+
all_labels.extend(labels.tolist())
|
| 43 |
+
|
| 44 |
+
accuracy = total_correct / total_samples
|
| 45 |
+
avg_loss = total_loss / total_samples
|
| 46 |
+
|
| 47 |
+
return {
|
| 48 |
+
"accuracy": accuracy,
|
| 49 |
+
"loss": avg_loss,
|
| 50 |
+
"predictions": np.array(all_preds),
|
| 51 |
+
"labels": np.array(all_labels),
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# Computes per-class accuracies
|
| 56 |
+
def class_accuracies(labels, preds, num_classes):
|
| 57 |
+
correct = np.zeros(num_classes, dtype=int)
|
| 58 |
+
counts = np.zeros(num_classes, dtype=int)
|
| 59 |
+
accuracies = np.zeros(num_classes, dtype=float)
|
| 60 |
+
|
| 61 |
+
for true, pred in zip(labels, preds):
|
| 62 |
+
counts[true] += 1
|
| 63 |
+
if true == pred:
|
| 64 |
+
correct[true] += 1
|
| 65 |
+
|
| 66 |
+
# Calculate accuracies
|
| 67 |
+
for i in range(num_classes):
|
| 68 |
+
if counts[i] > 0:
|
| 69 |
+
accuracies[i] = round(correct[i] / counts[i], 4)
|
| 70 |
+
else:
|
| 71 |
+
accuracies[i] = 0.0
|
| 72 |
+
|
| 73 |
+
return accuracies
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def plot_class_accuracies(accuracies, class_names):
|
| 77 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
| 78 |
+
|
| 79 |
+
ax.set_title("Per-Class Accuracy")
|
| 80 |
+
ax.set_xlabel("Class")
|
| 81 |
+
ax.set_ylabel("Accuracy")
|
| 82 |
+
ax.set_ylim(0, 1.0)
|
| 83 |
+
ax.bar(class_names, accuracies)
|
| 84 |
+
|
| 85 |
+
plt.xticks(rotation=90)
|
| 86 |
+
plt.tight_layout()
|
| 87 |
+
|
| 88 |
+
return fig
|
testingModel/run_testing.py
CHANGED
|
@@ -4,7 +4,7 @@ from dataPrep.helpers.clearml_data import extract_latest_data_task
|
|
| 4 |
import torch
|
| 5 |
from models.modelOne import modelOne
|
| 6 |
from models.modelTwo import BetterCNN
|
| 7 |
-
from testingModel.helpers.evaluation import make_predictions
|
| 8 |
|
| 9 |
|
| 10 |
# -------------- Load Data --------------
|
|
@@ -66,6 +66,27 @@ subset_results = make_predictions(model, test_subset, device)
|
|
| 66 |
testing_logger.report_single_value(name="Test Subset Accuracy", value=subset_results["accuracy"])
|
| 67 |
testing_logger.report_single_value(name="Test Subset Loss", value=subset_results["loss"])
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
# --------- Complete -----------------
|
| 71 |
print("\n------ Testing Complete ------")
|
|
|
|
| 4 |
import torch
|
| 5 |
from models.modelOne import modelOne
|
| 6 |
from models.modelTwo import BetterCNN
|
| 7 |
+
from testingModel.helpers.evaluation import make_predictions, class_accuracies, plot_class_accuracies
|
| 8 |
|
| 9 |
|
| 10 |
# -------------- Load Data --------------
|
|
|
|
| 66 |
testing_logger.report_single_value(name="Test Subset Accuracy", value=subset_results["accuracy"])
|
| 67 |
testing_logger.report_single_value(name="Test Subset Loss", value=subset_results["loss"])
|
| 68 |
|
| 69 |
+
# Compute per-class accuracy
|
| 70 |
+
preds = subset_results["predictions"]
|
| 71 |
+
labels = subset_results["labels"]
|
| 72 |
+
class_acc = class_accuracies(
|
| 73 |
+
labels,
|
| 74 |
+
preds,
|
| 75 |
+
num_classes=testing_config["num_classes"]
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Plot with formatted class names
|
| 79 |
+
class_names = subset_loaders['classNames']
|
| 80 |
+
formatted_class_names = [" ".join(name.replace('_', ' ').split()) for name in class_names]
|
| 81 |
+
acc_fig = plot_class_accuracies(class_acc, formatted_class_names)
|
| 82 |
+
|
| 83 |
+
# Log accuracies plot to ClearML
|
| 84 |
+
testing_logger.report_matplotlib_figure(
|
| 85 |
+
title="Subset Per-Class Accuracy",
|
| 86 |
+
series="Class Accuracy",
|
| 87 |
+
figure=acc_fig
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
|
| 91 |
# --------- Complete -----------------
|
| 92 |
print("\n------ Testing Complete ------")
|