FishEye8K / detect_strongsort.py
ntsc207's picture
Update detect_strongsort.py
a75c823 verified
import argparse
import os
# limit the number of cpus used by high performance libraries
# os.environ["OMP_NUM_THREADS"] = "8"
# os.environ["OPENBLAS_NUM_THREADS"] = "8"
# os.environ["MKL_NUM_THREADS"] = "8"
# os.environ["VECLIB_MAXIMUM_THREADS"] = "8"
# os.environ["NUMEXPR_NUM_THREADS"] = "8"
import platform
import sys
import numpy as np
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from time import time
import pandas as pd
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if str(ROOT / 'yolov9') not in sys.path:
sys.path.append(str(ROOT / 'yolov9')) # add yolov5 ROOT to PATH
if str(ROOT / 'strong_sort') not in sys.path:
sys.path.append(str(ROOT / 'strong_sort')) # add strong_sort ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.experimental import attempt_load
from models.common import DetectMultiBackend
from utils.dataloaders import LoadImages, LoadStreams, LoadScreenshots
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.torch_utils import select_device, time_sync, smart_inference_mode
from utils.plots import Annotator, colors, save_one_box
from strong_sort.utils.parser import get_config
from strong_sort.strong_sort import StrongSORT
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
def plot_one_box(x, img, color=None, label=None, line_thickness=3):
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def convert_to_int(tensor):
return tensor.type(torch.int16).item()
@smart_inference_mode()
def run_strongsort(
source='0',
data = ROOT / 'data/coco.yaml', # data.yaml path
yolo_weights=WEIGHTS / 'yolo.pt', # model.pt path(s),
strong_sort_weights=WEIGHTS / 'osnet_x0_25_msmt17.pt', # model.pt path,
config_strongsort=ROOT / 'strong_sort/configs/strong_sort.yaml',
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/track', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
screenshot = source.lower().startswith('screen')
if is_url and is_file:
source = check_file(source) # download
# Directories
if not isinstance(yolo_weights, list): # single yolo model
exp_name = Path(yolo_weights).stem
elif type(yolo_weights) is list and len(yolo_weights) == 1: # single models after --yolo_weights
exp_name = Path(yolo_weights[0]).stem
yolo_weights = Path(yolo_weights[0])
else: # multiple models after --yolo_weights
exp_name = 'ensemble'
exp_name = name if name else exp_name + "_" + Path(strong_sort_weights).stem
save_dir = increment_path(Path(project) / exp_name, exist_ok=exist_ok) # increment run
save_dir = Path(save_dir)
(save_dir / 'tracks' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(yolo_weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer,txt_path = [None] * bs, [None] * bs, [None] * bs
# initialize StrongSORT
cfg = get_config()
cfg.merge_from_file(config_strongsort)
# Create as many strong sort instances as there are video sources
strongsort_list = []
for i in range(bs):
strongsort_list.append(
StrongSORT(
strong_sort_weights,
device,
half,
max_dist=cfg.STRONGSORT.MAX_DIST,
max_iou_distance=cfg.STRONGSORT.MAX_IOU_DISTANCE,
max_age=cfg.STRONGSORT.MAX_AGE,
n_init=cfg.STRONGSORT.N_INIT,
nn_budget=cfg.STRONGSORT.NN_BUDGET,
mc_lambda=cfg.STRONGSORT.MC_LAMBDA,
ema_alpha=cfg.STRONGSORT.EMA_ALPHA,
)
)
strongsort_list[i].model.warmup()
outputs = [None] * bs
colors = [[0, 0, 255], [255, 148, 0], [0, 255, 10], [0, 247, 250], [235,0,255]]
#250, 247, 0
# Run tracking
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt,sdt = 0, [], (Profile(), Profile(), Profile(), Profile()),[0.0, 0.0, 0.0, 0.0]
curr_frames, prev_frames = [None] * bs, [None] * bs
frame_counts = []
for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset):
# s = ''
t1 = time_sync()
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
sdt[0] += t2 - t1
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
# pred = pred[0][1]
t3 = time_sync()
sdt[1] += t3 - t2
# Apply NMS
with dt[2]:
pred = pred[0][1] if isinstance(pred[0], list) else pred[0] # single model or ensemble
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
sdt[2] += time_sync() - t3
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
counts = {}
# Process detections
for i, det in enumerate(pred): # detections per image
seen += 1
if webcam: # bs >= 1
p, im0, _ = path[i], im0s[i].copy(), dataset.count
p = Path(p) # to Path
s += f'{i}: '
# txt_file_name = p.name
txt_file_name = p.stem + f'_{i}' # Unique text file name
# save_path = str(save_dir / p.name) + str(i) # im.jpg, vid.mp4, ...
save_path = str(save_dir / p.stem) + f'_{i}' # Unique video file name
else:
p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
# video file
if source.endswith(VID_FORMATS):
txt_file_name = p.stem
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
# folder with imgs
else:
txt_file_name = p.parent.name # get folder name containing current img
save_path = str(save_dir / p.parent.name) # im.jpg, vid.mp4, ...
curr_frames[i] = im0
txt_path = str(save_dir / 'tracks' / txt_file_name) # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if cfg.STRONGSORT.ECC: # camera motion compensation
strongsort_list[i].tracker.camera_update(prev_frames[i], curr_frames[i])
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
counts[names[int(c)]] = n
xywhs = xyxy2xywh(det[:, 0:4])
confs = det[:, 4]
clss = det[:, 5]
# pass detections to strongsort
t4 = time_sync()
outputs[i] = strongsort_list[i].update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
t5 = time_sync()
sdt[3] += t5 - t4
# Write results
for j, (output, conf) in enumerate(zip(outputs[i], confs)):
xyxy = output[0:4]
id = output[4]
cls = output[5]
label = names[int(cls)]
# for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
# line = (id , cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
line = ( int(p.stem), frame_idx, id , cls, *xywh, conf) if save_conf else ( p.stem, frame_idx, cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as file:
file.write(('%g ' * len(line) + '\n') % line)
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else ( str(id) + ' ' + names[c] if hide_conf else f' { id } {names[c]} {conf:.2f}')
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
frame_counts.append({'frame': frame_idx, 'counts': counts.copy()})
# # draw boxes for visualization
# if len(outputs[i]) > 0:
# for j, (output, conf) in enumerate(zip(outputs[i], confs)):
# bboxes = output[0:4]
# id = output[4]
# cls = output[5]
# if save_txt:
# # to MOT format
# bbox_left = output[0]
# bbox_top = output[1]
# bbox_w = output[2] - output[0]
# bbox_h = output[3] - output[1]
# # format video_name frame id xmin ymin width height score class
# with open(txt_path + '.txt', 'a') as file:
# file.write(f'{p.stem} {frame_idx} {id} {bbox_left} {bbox_top} {bbox_w} {bbox_h} {conf:.2f} {cls}\n')
# if save_img or save_crop or view_img: # Add bbox to image
# c = int(cls) # integer class
# id = int(id) # integer id
# label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
# plot_one_box(bboxes, im0, label=label, color=colors[int(cls)], line_thickness=2)
# if save_crop:
# txt_file_name = txt_file_name if (isinstance(path, list) and len(path) > 1) else ''
# save_one_box(bboxes, imc, file=save_dir / 'crops' / txt_file_name / names[c] / f'{id}' / f'{p.stem}.jpg', BGR=True)
print(f'{s}Done. YOLO:({t3 - t2:.3f}s), StrongSORT:({t5 - t4:.3f}s)')
else:
strongsort_list[i].increment_ages()
print('No detections')
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == 'Linux' and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc('m','p','4','v'), fps, (w, h))
vid_writer[i].write(im0)
prev_frames[i] = curr_frames[i]
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
flattened_counts = [
{'frame': entry['frame'], 'label': label, 'count': count}
for entry in frame_counts for label, count in entry['counts'].items()
]
frame_counts_df = pd.DataFrame(flattened_counts)
frame_counts_df['count'] = frame_counts_df['count'].apply(convert_to_int)
counts_df = None
# Print results
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape, %.1fms StrongSORT' % tuple(1E3 * x / seen for x in sdt))
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(yolo_weights[0]) # update model (to fix SourceChangeWarning)
return save_path, counts_df, frame_counts_df
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--yolo-weights', nargs='+', type=str, default=WEIGHTS / 'yolov9.pt', help='model.pt path(s)')
parser.add_argument('--strong-sort-weights', type=str, default=WEIGHTS / 'osnet_x0_25_msmt17.pt')
parser.add_argument('--config-strongsort', type=str, default='strong_sort/configs/strong_sort.yaml')
parser.add_argument('--source', type=str, default='0', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
# class 0 is person, 1 is bycicle, 2 is car... 79 is oven
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
return opt
def main(opt):
# check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
run_strongsort(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)