Spaces:
Running
Running
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang) | |
# | |
# See LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import wave | |
from functools import lru_cache | |
from typing import Tuple | |
import numpy as np | |
import sherpa_onnx | |
from huggingface_hub import hf_hub_download | |
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]: | |
""" | |
Args: | |
wave_filename: | |
Path to a wave file. It should be single channel and each sample should | |
be 16-bit. Its sample rate does not need to be 16kHz. | |
Returns: | |
Return a tuple containing: | |
- A 1-D array of dtype np.float32 containing the samples, which are | |
normalized to the range [-1, 1]. | |
- sample rate of the wave file | |
""" | |
with wave.open(wave_filename) as f: | |
assert f.getnchannels() == 1, f.getnchannels() | |
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes | |
num_samples = f.getnframes() | |
samples = f.readframes(num_samples) | |
samples_int16 = np.frombuffer(samples, dtype=np.int16) | |
samples_float32 = samples_int16.astype(np.float32) | |
samples_float32 = samples_float32 / 32768 | |
return samples_float32, f.getframerate() | |
def get_file( | |
repo_id: str, | |
filename: str, | |
subfolder: str = ".", | |
) -> str: | |
nn_model_filename = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
subfolder=subfolder, | |
) | |
return nn_model_filename | |
def get_speaker_segmentation_model(repo_id) -> str: | |
assert repo_id in ("pyannote/segmentation-3.0",) | |
if repo_id == "pyannote/segmentation-3.0": | |
return get_file( | |
repo_id="csukuangfj/sherpa-onnx-pyannote-segmentation-3-0", | |
filename="model.onnx", | |
) | |
def get_speaker_embedding_model(model_name) -> str: | |
assert ( | |
model_name | |
in three_d_speaker_embedding_models | |
+ nemo_speaker_embedding_models | |
+ wespeaker_embedding_models | |
) | |
model_name = model_name.split("|")[0] | |
return get_file( | |
repo_id="csukuangfj/speaker-embedding-models", | |
filename=model_name, | |
) | |
def get_speaker_diarization( | |
segmentation_model: str, embedding_model: str, num_clusters: int, threshold: float | |
): | |
segmentation = get_speaker_segmentation_model(segmentation_model) | |
embedding = get_speaker_embedding_model(embedding_model) | |
config = sherpa_onnx.OfflineSpeakerDiarizationConfig( | |
segmentation=sherpa_onnx.OfflineSpeakerSegmentationModelConfig( | |
pyannote=sherpa_onnx.OfflineSpeakerSegmentationPyannoteModelConfig( | |
model=segmentation | |
), | |
debug=True, | |
), | |
embedding=sherpa_onnx.SpeakerEmbeddingExtractorConfig( | |
model=embedding, | |
debug=True, | |
), | |
clustering=sherpa_onnx.FastClusteringConfig( | |
num_clusters=num_clusters, | |
threshold=threshold, | |
), | |
min_duration_on=0.3, | |
min_duration_off=0.5, | |
) | |
print("config", config) | |
if not config.validate(): | |
raise RuntimeError( | |
"Please check your config and make sure all required files exist" | |
) | |
return sherpa_onnx.OfflineSpeakerDiarization(config) | |
speaker_segmentation_models = ["pyannote/segmentation-3.0"] | |
nemo_speaker_embedding_models = [ | |
"nemo_en_speakerverification_speakernet.onnx|22MB", | |
"nemo_en_titanet_large.onnx|97MB", | |
"nemo_en_titanet_small.onnx|38MB", | |
] | |
three_d_speaker_embedding_models = [ | |
"3dspeaker_speech_eres2net_base_sv_zh-cn_3dspeaker_16k.onnx|37.8MB", | |
"3dspeaker_speech_campplus_sv_en_voxceleb_16k.onnx|28.2MB", | |
"3dspeaker_speech_campplus_sv_zh-cn_16k-common.onnx|27MB", | |
"3dspeaker_speech_campplus_sv_zh_en_16k-common_advanced.onnx|27MB", | |
"3dspeaker_speech_eres2net_base_200k_sv_zh-cn_16k-common.onnx|37.8MB", | |
"3dspeaker_speech_eres2net_large_sv_zh-cn_3dspeaker_16k.onnx|111MB", | |
"3dspeaker_speech_eres2net_sv_en_voxceleb_16k.onnx|25.3MB", | |
"3dspeaker_speech_eres2net_sv_zh-cn_16k-common.onnx|210MB", | |
"3dspeaker_speech_eres2netv2_sv_zh-cn_16k-common.onnx|68.1MB", | |
] | |
wespeaker_embedding_models = [ | |
"wespeaker_en_voxceleb_CAM++.onnx|28MB", | |
"wespeaker_en_voxceleb_CAM++_LM.onnx|28MB", | |
"wespeaker_en_voxceleb_resnet152_LM.onnx|76MB", | |
"wespeaker_en_voxceleb_resnet221_LM.onnx|91MB", | |
"wespeaker_en_voxceleb_resnet293_LM.onnx|110MB", | |
"wespeaker_en_voxceleb_resnet34.onnx|26MB", | |
"wespeaker_en_voxceleb_resnet34_LM.onnx|26MB", | |
"wespeaker_zh_cnceleb_resnet34.onnx|26MB", | |
"wespeaker_zh_cnceleb_resnet34_LM.onnx|26MB", | |
] | |
embedding2models = { | |
"3D-Speaker": three_d_speaker_embedding_models, | |
"NeMo": nemo_speaker_embedding_models, | |
"WeSpeaker": wespeaker_embedding_models, | |
} | |