|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from functools import lru_cache |
|
from typing import Union |
|
|
|
import torch |
|
import torchaudio |
|
from huggingface_hub import hf_hub_download |
|
|
|
os.system( |
|
"cp -v /usr/local/lib/python3.8/site-packages/k2/lib/*.so //usr/local/lib/python3.8/site-packages/sherpa/lib/" |
|
) |
|
|
|
os.system( |
|
"cp -v /home/user/.local/lib/python3.8/site-packages/k2/lib/*.so /home/user/.local/lib/python3.8/site-packages/sherpa/lib/" |
|
) |
|
|
|
import k2 |
|
import sherpa |
|
import sherpa_onnx |
|
import numpy as np |
|
from typing import Tuple |
|
import wave |
|
|
|
sample_rate = 16000 |
|
|
|
|
|
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]: |
|
""" |
|
Args: |
|
wave_filename: |
|
Path to a wave file. It should be single channel and each sample should |
|
be 16-bit. Its sample rate does not need to be 16kHz. |
|
Returns: |
|
Return a tuple containing: |
|
- A 1-D array of dtype np.float32 containing the samples, which are |
|
normalized to the range [-1, 1]. |
|
- sample rate of the wave file |
|
""" |
|
|
|
with wave.open(wave_filename) as f: |
|
assert f.getnchannels() == 1, f.getnchannels() |
|
assert f.getsampwidth() == 2, f.getsampwidth() |
|
num_samples = f.getnframes() |
|
samples = f.readframes(num_samples) |
|
samples_int16 = np.frombuffer(samples, dtype=np.int16) |
|
samples_float32 = samples_int16.astype(np.float32) |
|
|
|
samples_float32 = samples_float32 / 32768 |
|
return samples_float32, f.getframerate() |
|
|
|
|
|
def decode_offline_recognizer( |
|
recognizer: sherpa.OfflineRecognizer, |
|
filename: str, |
|
) -> str: |
|
s = recognizer.create_stream() |
|
|
|
s.accept_wave_file(filename) |
|
recognizer.decode_stream(s) |
|
|
|
text = s.result.text.strip() |
|
return text.lower() |
|
|
|
|
|
def decode_online_recognizer( |
|
recognizer: sherpa.OnlineRecognizer, |
|
filename: str, |
|
) -> str: |
|
samples, actual_sample_rate = torchaudio.load(filename) |
|
assert sample_rate == actual_sample_rate, ( |
|
sample_rate, |
|
actual_sample_rate, |
|
) |
|
samples = samples[0].contiguous() |
|
|
|
s = recognizer.create_stream() |
|
|
|
tail_padding = torch.zeros(int(sample_rate * 0.3), dtype=torch.float32) |
|
s.accept_waveform(sample_rate, samples) |
|
s.accept_waveform(sample_rate, tail_padding) |
|
s.input_finished() |
|
|
|
while recognizer.is_ready(s): |
|
recognizer.decode_stream(s) |
|
|
|
text = recognizer.get_result(s).text |
|
return text.strip().lower() |
|
|
|
|
|
def decode_offline_recognizer_sherpa_onnx( |
|
recognizer: sherpa_onnx.OfflineRecognizer, |
|
filename: str, |
|
) -> str: |
|
s = recognizer.create_stream() |
|
samples, sample_rate = read_wave(filename) |
|
s.accept_waveform(sample_rate, samples) |
|
recognizer.decode_stream(s) |
|
|
|
return s.result.text.lower() |
|
|
|
|
|
def decode_online_recognizer_sherpa_onnx( |
|
recognizer: sherpa_onnx.OnlineRecognizer, |
|
filename: str, |
|
) -> str: |
|
s = recognizer.create_stream() |
|
samples, sample_rate = read_wave(filename) |
|
s.accept_waveform(sample_rate, samples) |
|
|
|
tail_paddings = np.zeros(int(0.3 * sample_rate), dtype=np.float32) |
|
s.accept_waveform(sample_rate, tail_paddings) |
|
s.input_finished() |
|
|
|
while recognizer.is_ready(s): |
|
recognizer.decode_stream(s) |
|
|
|
return recognizer.get_result(s).lower() |
|
|
|
|
|
def decode( |
|
recognizer: Union[ |
|
sherpa.OfflineRecognizer, |
|
sherpa.OnlineRecognizer, |
|
sherpa_onnx.OfflineRecognizer, |
|
sherpa_onnx.OnlineRecognizer, |
|
], |
|
filename: str, |
|
) -> str: |
|
if isinstance(recognizer, sherpa.OfflineRecognizer): |
|
return decode_offline_recognizer(recognizer, filename) |
|
elif isinstance(recognizer, sherpa.OnlineRecognizer): |
|
return decode_online_recognizer(recognizer, filename) |
|
elif isinstance(recognizer, sherpa_onnx.OfflineRecognizer): |
|
return decode_offline_recognizer_sherpa_onnx(recognizer, filename) |
|
elif isinstance(recognizer, sherpa_onnx.OnlineRecognizer): |
|
return decode_online_recognizer_sherpa_onnx(recognizer, filename) |
|
else: |
|
raise ValueError(f"Unknown recognizer type {type(recognizer)}") |
|
|
|
|
|
@lru_cache(maxsize=30) |
|
def get_pretrained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> Union[sherpa.OfflineRecognizer, sherpa.OnlineRecognizer]: |
|
if repo_id in chinese_models: |
|
return chinese_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in chinese_dialect_models: |
|
return chinese_dialect_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in english_models: |
|
return english_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in chinese_english_mixed_models: |
|
return chinese_english_mixed_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in chinese_cantonese_english_models: |
|
return chinese_cantonese_english_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in cantonese_models: |
|
return cantonese_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in tibetan_models: |
|
return tibetan_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in arabic_models: |
|
return arabic_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in german_models: |
|
return german_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in french_models: |
|
return french_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in japanese_models: |
|
return japanese_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in russian_models: |
|
return russian_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
else: |
|
raise ValueError(f"Unsupported repo_id: {repo_id}") |
|
|
|
|
|
def _get_nn_model_filename( |
|
repo_id: str, |
|
filename: str, |
|
subfolder: str = "exp", |
|
) -> str: |
|
nn_model_filename = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder, |
|
) |
|
return nn_model_filename |
|
|
|
|
|
def _get_bpe_model_filename( |
|
repo_id: str, |
|
filename: str = "bpe.model", |
|
subfolder: str = "data/lang_bpe_500", |
|
) -> str: |
|
bpe_model_filename = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder, |
|
) |
|
return bpe_model_filename |
|
|
|
|
|
def _get_token_filename( |
|
repo_id: str, |
|
filename: str = "tokens.txt", |
|
subfolder: str = "data/lang_char", |
|
) -> str: |
|
token_filename = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder, |
|
) |
|
return token_filename |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_aishell2_pretrained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa.OfflineRecognizer: |
|
assert repo_id in [ |
|
|
|
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", |
|
|
|
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="cpu_jit.pt", |
|
) |
|
tokens = _get_token_filename(repo_id=repo_id) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_zrjin_cantonese_pre_trained_model( |
|
repo_id: str, decoding_method: str, num_active_paths: int |
|
) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in ("zrjin/icefall-asr-mdcc-zipformer-2024-03-11",), repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder-epoch-45-avg-35.int8.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder-epoch-45-avg-35.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner-epoch-45-avg-35.int8.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_char") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
decoding_method=decoding_method, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_russian_pre_trained_model( |
|
repo_id: str, decoding_method: str, num_active_paths: int |
|
) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in ( |
|
"alphacep/vosk-model-ru", |
|
"alphacep/vosk-model-small-ru", |
|
), repo_id |
|
|
|
if repo_id == "alphacep/vosk-model-ru": |
|
model_dir = "am-onnx" |
|
elif repo_id == "alphacep/vosk-model-small-ru": |
|
model_dir = "am" |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder.onnx", |
|
subfolder=model_dir, |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder.onnx", |
|
subfolder=model_dir, |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner.onnx", |
|
subfolder=model_dir, |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="lang") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
decoding_method=decoding_method, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_whisper_model( |
|
repo_id: str, decoding_method: str, num_active_paths: int |
|
) -> sherpa_onnx.OfflineRecognizer: |
|
name = repo_id.split("-")[1] |
|
assert name in ("tiny.en", "base.en", "small.en", "medium.en"), repo_id |
|
full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name |
|
encoder = _get_nn_model_filename( |
|
repo_id=full_repo_id, |
|
filename=f"{name}-encoder.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
decoder = _get_nn_model_filename( |
|
repo_id=full_repo_id, |
|
filename=f"{name}-decoder.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename( |
|
repo_id=full_repo_id, subfolder=".", filename=f"{name}-tokens.txt" |
|
) |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_whisper( |
|
encoder=encoder, |
|
decoder=decoder, |
|
tokens=tokens, |
|
num_threads=2, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_gigaspeech_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa.OfflineRecognizer: |
|
assert repo_id in [ |
|
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="cpu_jit-iter-3488000-avg-20.pt", |
|
) |
|
tokens = "./giga-tokens.txt" |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_english_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa.OfflineRecognizer: |
|
assert repo_id in [ |
|
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02", |
|
"yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04", |
|
"yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19", |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11", |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14", |
|
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16", |
|
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15", |
|
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16", |
|
"videodanchik/icefall-asr-tedlium3-conformer-ctc2", |
|
"pkufool/icefall_asr_librispeech_conformer_ctc", |
|
"WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21", |
|
], repo_id |
|
|
|
filename = "cpu_jit.pt" |
|
if ( |
|
repo_id |
|
== "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11" |
|
): |
|
filename = "cpu_jit-torch-1.10.0.pt" |
|
|
|
if ( |
|
repo_id |
|
== "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02" |
|
): |
|
filename = "cpu_jit-torch-1.10.pt" |
|
|
|
if ( |
|
repo_id |
|
== "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04" |
|
): |
|
filename = "cpu_jit-epoch-30-avg-4.pt" |
|
|
|
if ( |
|
repo_id |
|
== "yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19" |
|
): |
|
filename = "cpu_jit-epoch-20-avg-5.pt" |
|
|
|
if repo_id in ( |
|
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16", |
|
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15", |
|
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16", |
|
): |
|
filename = "jit_script.pt" |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename=filename, |
|
) |
|
subfolder = "data/lang_bpe_500" |
|
|
|
if repo_id in ( |
|
"videodanchik/icefall-asr-tedlium3-conformer-ctc2", |
|
"pkufool/icefall_asr_librispeech_conformer_ctc", |
|
): |
|
subfolder = "data/lang_bpe" |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_wenetspeech_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt", |
|
) |
|
tokens = _get_token_filename(repo_id=repo_id) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_chinese_english_mixed_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5", |
|
"ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh", |
|
], repo_id |
|
|
|
if repo_id == "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": |
|
filename = "cpu_jit.pt" |
|
subfolder = "data/lang_char" |
|
elif repo_id == "ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": |
|
filename = "cpu_jit-epoch-11-avg-1.pt" |
|
subfolder = "data/lang_char_bpe" |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename=filename, |
|
) |
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_alimeeting_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7", |
|
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2", |
|
], repo_id |
|
|
|
if repo_id == "desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7": |
|
filename = "cpu_jit.pt" |
|
elif repo_id == "luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": |
|
filename = "cpu_jit_torch_1.7.1.pt" |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename=filename, |
|
) |
|
tokens = _get_token_filename(repo_id=repo_id) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_wenet_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"csukuangfj/wenet-chinese-model", |
|
"csukuangfj/wenet-english-model", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="final.zip", |
|
subfolder=".", |
|
) |
|
tokens = _get_token_filename( |
|
repo_id=repo_id, |
|
filename="units.txt", |
|
subfolder=".", |
|
) |
|
|
|
feat_config = sherpa.FeatureConfig(normalize_samples=False) |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_aidatatang_200zh_pretrained_mode( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="cpu_jit_torch.1.7.1.pt", |
|
) |
|
tokens = _get_token_filename(repo_id=repo_id) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_tibetan_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02", |
|
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29", |
|
], repo_id |
|
|
|
filename = "cpu_jit.pt" |
|
if ( |
|
repo_id |
|
== "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29" |
|
): |
|
filename = "cpu_jit-epoch-28-avg-23-torch-1.10.0.pt" |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename=filename, |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500") |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_arabic_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="cpu_jit.pt", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_5000") |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_german_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"csukuangfj/wav2vec2.0-torchaudio", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="voxpopuli_asr_base_10k_de.pt", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename( |
|
repo_id=repo_id, |
|
filename="tokens-de.txt", |
|
subfolder=".", |
|
) |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_french_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa_onnx.OnlineRecognizer: |
|
assert repo_id in [ |
|
"shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14", |
|
], repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder-epoch-29-avg-9-with-averaged-model.onnx", |
|
subfolder=".", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder-epoch-29-avg-9-with-averaged-model.onnx", |
|
subfolder=".", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner-epoch-29-avg-9-with-averaged-model.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OnlineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
decoding_method=decoding_method, |
|
max_active_paths=num_active_paths, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_streaming_zipformer_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa_onnx.OnlineRecognizer: |
|
assert repo_id in [ |
|
"csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20", |
|
], repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder-epoch-99-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder-epoch-99-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner-epoch-99-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OnlineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
decoding_method=decoding_method, |
|
max_active_paths=num_active_paths, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_japanese_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa.OnlineRecognizer: |
|
repo_id, kind = repo_id.rsplit("-", maxsplit=1) |
|
|
|
assert repo_id in [ |
|
"TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208" |
|
], repo_id |
|
assert kind in ("fluent", "disfluent"), kind |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, filename="encoder_jit_trace.pt", subfolder=f"exp_{kind}" |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, filename="decoder_jit_trace.pt", subfolder=f"exp_{kind}" |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, filename="joiner_jit_trace.pt", subfolder=f"exp_{kind}" |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OnlineRecognizerConfig( |
|
nn_model="", |
|
encoder_model=encoder_model, |
|
decoder_model=decoder_model, |
|
joiner_model=joiner_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
chunk_size=32, |
|
) |
|
|
|
recognizer = sherpa.OnlineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_gigaspeech_pre_trained_model_onnx( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in [ |
|
"yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17", |
|
], repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder-epoch-30-avg-9.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder-epoch-30-avg-9.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner-epoch-30-avg-9.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
decoding_method=decoding_method, |
|
max_active_paths=num_active_paths, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_streaming_paraformer_zh_yue_en_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa_onnx.OnlineRecognizer: |
|
assert repo_id in [ |
|
"csukuangfj/sherpa-onnx-streaming-paraformer-trilingual-zh-cantonese-en", |
|
], repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OnlineRecognizer.from_paraformer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
decoding_method=decoding_method, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_paraformer_en_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in [ |
|
"yujinqiu/sherpa-onnx-paraformer-en-2023-10-24", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="model.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename( |
|
repo_id=repo_id, filename="new_tokens.txt", subfolder="." |
|
) |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer( |
|
paraformer=nn_model, |
|
tokens=tokens, |
|
num_threads=2, |
|
sample_rate=sample_rate, |
|
feature_dim=80, |
|
decoding_method="greedy_search", |
|
debug=False, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=5) |
|
def _get_chinese_dialect_models( |
|
repo_id: str, decoding_method: str, num_active_paths: int |
|
) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in [ |
|
"csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="model.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_telespeech_ctc( |
|
paraformer=nn_model, |
|
tokens=tokens, |
|
num_threads=2, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_paraformer_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in [ |
|
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28", |
|
"csukuangfj/sherpa-onnx-paraformer-zh-2024-03-09", |
|
"csukuangfj/sherpa-onnx-paraformer-zh-small-2024-03-09", |
|
"csukuangfj/sherpa-onnx-paraformer-trilingual-zh-cantonese-en", |
|
"csukuangfj/sherpa-onnx-paraformer-en-2024-03-09", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="model.int8.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer( |
|
paraformer=nn_model, |
|
tokens=tokens, |
|
num_threads=2, |
|
sample_rate=sample_rate, |
|
feature_dim=80, |
|
decoding_method="greedy_search", |
|
debug=False, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
def _get_aishell_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in ( |
|
"zrjin/icefall-asr-aishell-zipformer-large-2023-10-24", |
|
"zrjin/icefall-asr-aishell-zipformer-small-2023-10-24", |
|
"zrjin/icefall-asr-aishell-zipformer-2023-10-24", |
|
), repo_id |
|
if repo_id == "zrjin/icefall-asr-aishell-zipformer-large-2023-10-24": |
|
epoch = 56 |
|
avg = 23 |
|
elif repo_id == "zrjin/icefall-asr-aishell-zipformer-small-2023-10-24": |
|
epoch = 55 |
|
avg = 21 |
|
elif repo_id == "zrjin/icefall-asr-aishell-zipformer-2023-10-24": |
|
epoch = 55 |
|
avg = 17 |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename=f"encoder-epoch-{epoch}-avg-{avg}.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename=f"decoder-epoch-{epoch}-avg-{avg}.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename=f"joiner-epoch-{epoch}-avg-{avg}.onnx", |
|
subfolder="exp", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_char") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
decoding_method=decoding_method, |
|
max_active_paths=num_active_paths, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=2) |
|
def get_punct_model() -> sherpa_onnx.OfflinePunctuation: |
|
model = _get_nn_model_filename( |
|
repo_id="csukuangfj/sherpa-onnx-punct-ct-transformer-zh-en-vocab272727-2024-04-12", |
|
filename="model.onnx", |
|
subfolder=".", |
|
) |
|
config = sherpa_onnx.OfflinePunctuationConfig( |
|
model=sherpa_onnx.OfflinePunctuationModelConfig(ct_transformer=model), |
|
) |
|
|
|
punct = sherpa_onnx.OfflinePunctuation(config) |
|
return punct |
|
|
|
|
|
def _get_multi_zh_hans_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa_onnx.OfflineRecognizer: |
|
assert repo_id in ("zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2",), repo_id |
|
|
|
encoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="encoder-epoch-20-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
decoder_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="decoder-epoch-20-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
joiner_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="joiner-epoch-20-avg-1.onnx", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=".") |
|
|
|
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( |
|
tokens=tokens, |
|
encoder=encoder_model, |
|
decoder=decoder_model, |
|
joiner=joiner_model, |
|
num_threads=2, |
|
sample_rate=16000, |
|
feature_dim=80, |
|
decoding_method=decoding_method, |
|
max_active_paths=num_active_paths, |
|
) |
|
|
|
return recognizer |
|
|
|
|
|
chinese_models = { |
|
"csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04": _get_chinese_dialect_models, |
|
} |
|
|
|
chinese_models = { |
|
"csukuangfj/sherpa-onnx-paraformer-zh-2024-03-09": _get_paraformer_pre_trained_model, |
|
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, |
|
"csukuangfj/sherpa-onnx-paraformer-zh-small-2024-03-09": _get_paraformer_pre_trained_model, |
|
"zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2": _get_multi_zh_hans_pre_trained_model, |
|
"zrjin/icefall-asr-aishell-zipformer-large-2023-10-24": _get_aishell_pre_trained_model, |
|
"zrjin/icefall-asr-aishell-zipformer-small-2023-10-24": _get_aishell_pre_trained_model, |
|
"zrjin/icefall-asr-aishell-zipformer-2023-10-24": _get_aishell_pre_trained_model, |
|
"desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7": _get_alimeeting_pre_trained_model, |
|
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12": _get_aishell2_pretrained_model, |
|
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12": _get_aishell2_pretrained_model, |
|
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2": _get_aidatatang_200zh_pretrained_mode, |
|
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": _get_alimeeting_pre_trained_model, |
|
"csukuangfj/wenet-chinese-model": _get_wenet_model, |
|
|
|
} |
|
|
|
english_models = { |
|
"whisper-tiny.en": _get_whisper_model, |
|
"whisper-base.en": _get_whisper_model, |
|
"whisper-small.en": _get_whisper_model, |
|
|
|
"csukuangfj/sherpa-onnx-paraformer-en-2024-03-09": _get_paraformer_pre_trained_model, |
|
"yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17": _get_gigaspeech_pre_trained_model_onnx, |
|
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2": _get_gigaspeech_pre_trained_model, |
|
"yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04": _get_english_model, |
|
"yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19": _get_english_model, |
|
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02": _get_english_model, |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14": _get_english_model, |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11": _get_english_model, |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13": _get_english_model, |
|
"yujinqiu/sherpa-onnx-paraformer-en-2023-10-24": _get_paraformer_en_pre_trained_model, |
|
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16": _get_english_model, |
|
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15": _get_english_model, |
|
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16": _get_english_model, |
|
"videodanchik/icefall-asr-tedlium3-conformer-ctc2": _get_english_model, |
|
"pkufool/icefall_asr_librispeech_conformer_ctc": _get_english_model, |
|
"WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21": _get_english_model, |
|
"csukuangfj/wenet-english-model": _get_wenet_model, |
|
} |
|
|
|
chinese_english_mixed_models = { |
|
"csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20": _get_streaming_zipformer_pre_trained_model, |
|
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_pre_trained_model, |
|
"ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": _get_chinese_english_mixed_model, |
|
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": _get_chinese_english_mixed_model, |
|
} |
|
|
|
tibetan_models = { |
|
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02": _get_tibetan_pre_trained_model, |
|
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29": _get_tibetan_pre_trained_model, |
|
} |
|
|
|
arabic_models = { |
|
"AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06": _get_arabic_pre_trained_model, |
|
} |
|
|
|
german_models = { |
|
"csukuangfj/wav2vec2.0-torchaudio": _get_german_pre_trained_model, |
|
} |
|
|
|
french_models = { |
|
"shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14": _get_french_pre_trained_model, |
|
} |
|
|
|
japanese_models = { |
|
"TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-fluent": _get_japanese_pre_trained_model, |
|
"TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-disfluent": _get_japanese_pre_trained_model, |
|
} |
|
|
|
russian_models = { |
|
"alphacep/vosk-model-ru": _get_russian_pre_trained_model, |
|
"alphacep/vosk-model-small-ru": _get_russian_pre_trained_model, |
|
} |
|
|
|
chinese_cantonese_english_models = { |
|
"csukuangfj/sherpa-onnx-paraformer-trilingual-zh-cantonese-en": _get_paraformer_pre_trained_model, |
|
"csukuangfj/sherpa-onnx-streaming-paraformer-trilingual-zh-cantonese-en": _get_streaming_paraformer_zh_yue_en_pre_trained_model, |
|
} |
|
|
|
cantonese_models = { |
|
"zrjin/icefall-asr-mdcc-zipformer-2024-03-11": _get_zrjin_cantonese_pre_trained_model, |
|
} |
|
|
|
|
|
all_models = { |
|
**chinese_models, |
|
**english_models, |
|
**chinese_english_mixed_models, |
|
**chinese_cantonese_english_models, |
|
**cantonese_models, |
|
|
|
**tibetan_models, |
|
**arabic_models, |
|
**german_models, |
|
**french_models, |
|
**russian_models, |
|
} |
|
|
|
language_to_models = { |
|
"超多种中文方言": list(chinese_dialect_models.keys()), |
|
"Chinese": list(chinese_models.keys()), |
|
"English": list(english_models.keys()), |
|
"Chinese+English": list(chinese_english_mixed_models.keys()), |
|
"Chinese+English+Cantonese": list(chinese_cantonese_english_models.keys()), |
|
"Cantonese": list(cantonese_models.keys()), |
|
|
|
"Tibetan": list(tibetan_models.keys()), |
|
"Arabic": list(arabic_models.keys()), |
|
"German": list(german_models.keys()), |
|
"French": list(french_models.keys()), |
|
"Russian": list(russian_models.keys()), |
|
} |
|
|