Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Load from local checkpoint | |
# or whatever your checkpoint number is | |
model_id = "checkpoint-2391" | |
tokenizer = AutoTokenizer.from_pretrained( | |
'huawei-noah/TinyBERT_General_4L_312D') # Original tokenizer | |
model = AutoModelForSequenceClassification.from_pretrained(model_id) | |
def predict(text): | |
# Tokenize and predict | |
inputs = tokenizer(text, | |
truncation=True, | |
padding=True, | |
max_length=64, | |
return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
prediction = probs.argmax(-1).item() | |
confidence = probs[0][prediction].item() | |
return probs | |
label_map = {0: 'Left', 1: 'Right', 2: 'Centrist'} | |
return f"{label_map[prediction]} (Confidence: {confidence:.2%})" | |
# Create the interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Textbox(lines=4, placeholder="Enter text to analyze..."), | |
outputs="text", | |
title="Political Text Classifier", | |
description="Classify political text as Left, Right, or Centrist" | |
) | |
demo.launch() | |