Spaces:
Runtime error
Runtime error
import tempfile | |
from share_btn import community_icon_html, loading_icon_html, share_js, save_js | |
import huggingface_hub | |
import gradio as gr | |
from gill import utils | |
from gill import models | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
import torch | |
import numpy as np | |
import os | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False" | |
css = """ | |
#chatbot { min-height: 300px; } | |
#save-btn { | |
background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0)); | |
} | |
#save-btn:hover { | |
background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0)); | |
} | |
#share-btn { | |
background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0)); | |
} | |
#share-btn:hover { | |
background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0)); | |
} | |
#gallery { z-index: 999999; } | |
#gallery img:hover {transform: scale(2.3); z-index: 999999; position: relative; padding-right: 30%; padding-bottom: 30%;} | |
#gallery button img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; padding-bottom: 0;} | |
@media (hover: none) { | |
#gallery img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; 0;} | |
} | |
.html2canvas-container { width: 3000px !important; height: 3000px !important; } | |
""" | |
examples = [ | |
'examples/ramen.png', | |
'examples/cake.png', | |
'examples/couch.png', | |
'examples/tattoo.png', | |
'examples/cupcakes.png', | |
] | |
# Download model from HF Hub. | |
ckpt_path = huggingface_hub.hf_hub_download( | |
repo_id='jykoh/gill', filename='pretrained_ckpt.pth.tar') | |
decision_model_path = huggingface_hub.hf_hub_download( | |
repo_id='jykoh/gill', filename='decision_model.pth.tar') | |
args_path = huggingface_hub.hf_hub_download( | |
repo_id='jykoh/gill', filename='model_args.json') | |
model = models.load_gill('./', args_path, ckpt_path, decision_model_path) | |
def upload_image(state, image_input): | |
conversation = state[0] | |
chat_history = state[1] | |
input_image = Image.open(image_input.name).resize( | |
(224, 224)).convert('RGB') | |
input_image.save(image_input.name) # Overwrite with smaller image. | |
conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")] | |
return [conversation, chat_history + [input_image, ""]], conversation | |
def reset(): | |
return [[], []], [] | |
def reset_last(state): | |
conversation = state[0][:-1] | |
chat_history = state[1][:-2] | |
return [conversation, chat_history], conversation | |
def save_image_to_local(image: Image.Image): | |
# TODO(jykoh): Update so the url path is used, to prevent repeat saving. | |
filename = next(tempfile._get_candidate_names()) + '.png' | |
image.save(filename) | |
return filename | |
def generate_for_prompt(input_text, state, ret_scale_factor, num_words, temperature): | |
g_cuda = torch.Generator(device='cuda').manual_seed(1337) | |
# Ignore empty inputs. | |
if len(input_text) == 0: | |
return state, state[0], gr.update(visible=True) | |
input_prompt = 'Q: ' + input_text + '\nA:' | |
conversation = state[0] | |
chat_history = state[1] | |
print('Generating for', chat_history, flush=True) | |
# If an image was uploaded, prepend it to the model. | |
model_inputs = chat_history | |
model_inputs.append(input_prompt) | |
# Remove empty text. | |
model_inputs = [s for s in model_inputs if s != ''] | |
top_p = 1.0 | |
if temperature != 0.0: | |
top_p = 0.95 | |
print('Running model.generate_for_images_and_texts with', model_inputs, flush=True) | |
model_outputs = model.generate_for_images_and_texts(model_inputs, | |
num_words=max(num_words, 1), ret_scale_factor=ret_scale_factor, top_p=top_p, | |
temperature=temperature, max_num_rets=1, | |
num_inference_steps=50, generator=g_cuda) | |
print('model_outputs', model_outputs, ret_scale_factor, flush=True) | |
response = '' | |
text_outputs = [] | |
for output_i, p in enumerate(model_outputs): | |
if type(p) == str: | |
if output_i > 0: | |
response += '<br/>' | |
# Remove the image tokens for output. | |
text_outputs.append(p.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', '')) | |
response += p | |
if len(model_outputs) > 1: | |
response += '<br/>' | |
elif type(p) == dict: | |
# Decide whether to generate or retrieve. | |
if p['decision'] is not None and p['decision'][0] == 'gen': | |
image = p['gen'][0][0]#.resize((224, 224)) | |
filename = save_image_to_local(image) | |
response += f'<img src="./file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555; margin-top: 0;">(Generated)</p>' | |
else: | |
image = p['ret'][0][0]#.resize((224, 224)) | |
filename = save_image_to_local(image) | |
response += f'<img src="./file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555; margin-top: 0;">(Retrieved)</p>' | |
chat_history = model_inputs + \ | |
[' '.join([s for s in model_outputs if type(s) == str]) + '\n'] | |
# Remove [RET] from outputs. | |
conversation.append((input_text, response.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', ''))) | |
# Set input image to None. | |
print('state', state, flush=True) | |
print('updated state', [conversation, chat_history], flush=True) | |
return [conversation, chat_history], conversation, gr.update(visible=True), gr.update(visible=True) | |
with gr.Blocks(css=css) as demo: | |
gr.HTML(""" | |
<h1>π GILL</h1> | |
<p>This is the official Gradio demo for the GILL model, a model that can process arbitrarily interleaved image and text inputs, and produce image and text outputs.</p> | |
<strong>Paper:</strong> <a href="https://arxiv.org/abs/2305.17216" target="_blank">Generating Images with Multimodal Language Models</a> | |
<br/> | |
<strong>Project Website:</strong> <a href="https://jykoh.com/gill" target="_blank">GILL Website</a> | |
<br/> | |
<strong>Code and Models:</strong> <a href="https://github.com/kohjingyu/gill" target="_blank">GitHub</a> | |
<br/> | |
<br/> | |
<strong>Tips:</strong> | |
<ul> | |
<li>Start by inputting either image or text prompts (or both) and chat with GILL to get image-and-text replies.</li> | |
<li>Tweak the level of sensitivity to images and text using the parameters on the right.</li> | |
<li>Check out cool conversations in the examples or community tab for inspiration and share your own!</li> | |
<li>If the model outputs a blank image, it is because Stable Diffusion's safety filter detected inappropriate content. Please try again with a different prompt.</li> | |
<li>Outputs may differ slightly from the paper due to slight implementation differences. For reproducing paper results, please use our <a href="https://github.com/kohjingyu/gill" target="_blank">official code</a>.</li> | |
<li>For faster inference without waiting in queue, you may duplicate the space and use your own GPU: <a href="https://huggingface.co/spaces/jykoh/gill?duplicate=true"><img style="display: inline-block; margin-top: 0em; margin-bottom: 0em" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></li> | |
</ul> | |
""") | |
gr_state = gr.State([[], []]) # conversation, chat_history | |
with gr.Row(): | |
with gr.Column(scale=0.7, min_width=500): | |
with gr.Row(): | |
chatbot = gr.Chatbot(elem_id="chatbot", label="π GILL Chatbot") | |
with gr.Row(): | |
image_btn = gr.UploadButton("πΌοΈ Upload Image", file_types=["image"]) | |
text_input = gr.Textbox(label="Message", placeholder="Type a message") | |
with gr.Column(): | |
submit_btn = gr.Button( | |
"Submit", interactive=True, variant="primary") | |
clear_last_btn = gr.Button("Undo") | |
clear_btn = gr.Button("Reset All") | |
with gr.Row(visible=False) as save_group: | |
save_button = gr.Button("πΎ Save Conversation as .png", elem_id="save-btn") | |
with gr.Row(visible=False) as share_group: | |
share_button = gr.Button("π€ Share to Community (opens new window)", elem_id="share-btn") | |
with gr.Column(scale=0.3, min_width=400): | |
ret_scale_factor = gr.Slider(minimum=0.0, maximum=3.0, value=1.3, step=0.1, interactive=True, | |
label="Frequency multiplier for returning images (higher means more frequent)") | |
# max_ret_images = gr.Number( | |
# minimum=0, maximum=3, value=2, precision=1, interactive=True, label="Max images to return") | |
gr_max_len = gr.Slider(minimum=1, maximum=64, value=32, | |
step=1, interactive=True, label="Max # of words") | |
gr_temperature = gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True, label="Temperature (0 for deterministic, higher for more randomness)") | |
gallery = gr.Gallery( | |
value=[Image.open(e) for e in examples], label="Example Conversations", show_label=True, elem_id="gallery") #, grid=[2], height="auto") | |
text_input.submit(generate_for_prompt, [text_input, gr_state, ret_scale_factor, | |
gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group]) | |
text_input.submit(lambda: "", None, text_input) # Reset chatbox. | |
submit_btn.click(generate_for_prompt, [text_input, gr_state, ret_scale_factor, | |
gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group]) | |
submit_btn.click(lambda: "", None, text_input) # Reset chatbox. | |
image_btn.upload(upload_image, [gr_state, image_btn], [gr_state, chatbot]) | |
clear_last_btn.click(reset_last, [gr_state], [gr_state, chatbot]) | |
clear_btn.click(reset, [], [gr_state, chatbot]) | |
# share_button.click(None, [], [], _js=share_js) | |
# save_button.click(None, [], [], _js=save_js) | |
demo.queue(api_open=False, max_size=16) | |
demo.launch(debug=True, server_name="0.0.0.0") | |
# demo.launch(debug=True, server_name="127.0.0.1") | |