gill / app.py
jykoh's picture
Remove concurrency count
f55f742
raw
history blame
11.1 kB
import tempfile
from share_btn import community_icon_html, loading_icon_html, share_js, save_js
import huggingface_hub
import gradio as gr
from gill import utils
from gill import models
import matplotlib.pyplot as plt
from PIL import Image
import torch
import numpy as np
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
css = """
#chatbot { min-height: 300px; }
#save-btn {
background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
}
#save-btn:hover {
background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
}
#share-btn {
background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
}
#share-btn:hover {
background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
}
#gallery { z-index: 999999; }
#gallery img:hover {transform: scale(2.3); z-index: 999999; position: relative; padding-right: 30%; padding-bottom: 30%;}
#gallery button img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; padding-bottom: 0;}
@media (hover: none) {
#gallery img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; 0;}
}
.html2canvas-container { width: 3000px !important; height: 3000px !important; }
"""
examples = [
'examples/ramen.png',
'examples/cake.png',
'examples/couch.png',
'examples/tattoo.png',
'examples/cupcakes.png',
]
# Download model from HF Hub.
ckpt_path = huggingface_hub.hf_hub_download(
repo_id='jykoh/gill', filename='pretrained_ckpt.pth.tar')
decision_model_path = huggingface_hub.hf_hub_download(
repo_id='jykoh/gill', filename='decision_model.pth.tar')
args_path = huggingface_hub.hf_hub_download(
repo_id='jykoh/gill', filename='model_args.json')
model = models.load_gill('./', args_path, ckpt_path, decision_model_path)
def upload_image(state, image_input):
conversation = state[0]
chat_history = state[1]
input_image = Image.open(image_input.name).resize(
(224, 224)).convert('RGB')
input_image.save(image_input.name) # Overwrite with smaller image.
conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")]
return [conversation, chat_history + [input_image, ""]], conversation
def reset():
return [[], []], []
def reset_last(state):
conversation = state[0][:-1]
chat_history = state[1][:-2]
return [conversation, chat_history], conversation
def save_image_to_local(image: Image.Image):
# TODO(jykoh): Update so the url path is used, to prevent repeat saving.
filename = next(tempfile._get_candidate_names()) + '.png'
image.save(filename)
return filename
def generate_for_prompt(input_text, state, ret_scale_factor, num_words, temperature):
g_cuda = torch.Generator(device='cuda').manual_seed(1337)
# Ignore empty inputs.
if len(input_text) == 0:
return state, state[0], gr.update(visible=True)
input_prompt = 'Q: ' + input_text + '\nA:'
conversation = state[0]
chat_history = state[1]
print('Generating for', chat_history, flush=True)
# If an image was uploaded, prepend it to the model.
model_inputs = chat_history
model_inputs.append(input_prompt)
# Remove empty text.
model_inputs = [s for s in model_inputs if s != '']
top_p = 1.0
if temperature != 0.0:
top_p = 0.95
print('Running model.generate_for_images_and_texts with', model_inputs, flush=True)
model_outputs = model.generate_for_images_and_texts(model_inputs,
num_words=max(num_words, 1), ret_scale_factor=ret_scale_factor, top_p=top_p,
temperature=temperature, max_num_rets=1,
num_inference_steps=50, generator=g_cuda)
print('model_outputs', model_outputs, ret_scale_factor, flush=True)
response = ''
text_outputs = []
for output_i, p in enumerate(model_outputs):
if type(p) == str:
if output_i > 0:
response += '<br/>'
# Remove the image tokens for output.
text_outputs.append(p.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', ''))
response += p
if len(model_outputs) > 1:
response += '<br/>'
elif type(p) == dict:
# Decide whether to generate or retrieve.
if p['decision'] is not None and p['decision'][0] == 'gen':
image = p['gen'][0][0]#.resize((224, 224))
filename = save_image_to_local(image)
response += f'<img src="./file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555; margin-top: 0;">(Generated)</p>'
else:
image = p['ret'][0][0]#.resize((224, 224))
filename = save_image_to_local(image)
response += f'<img src="./file={filename}" style="display: inline-block;"><p style="font-size: 12px; color: #555; margin-top: 0;">(Retrieved)</p>'
chat_history = model_inputs + \
[' '.join([s for s in model_outputs if type(s) == str]) + '\n']
# Remove [RET] from outputs.
conversation.append((input_text, response.replace('[IMG0] [IMG1] [IMG2] [IMG3] [IMG4] [IMG5] [IMG6] [IMG7]', '')))
# Set input image to None.
print('state', state, flush=True)
print('updated state', [conversation, chat_history], flush=True)
return [conversation, chat_history], conversation, gr.update(visible=True), gr.update(visible=True)
with gr.Blocks(css=css) as demo:
gr.HTML("""
<h1>🐟 GILL</h1>
<p>This is the official Gradio demo for the GILL model, a model that can process arbitrarily interleaved image and text inputs, and produce image and text outputs.</p>
<strong>Paper:</strong> <a href="https://arxiv.org/abs/2305.17216" target="_blank">Generating Images with Multimodal Language Models</a>
<br/>
<strong>Project Website:</strong> <a href="https://jykoh.com/gill" target="_blank">GILL Website</a>
<br/>
<strong>Code and Models:</strong> <a href="https://github.com/kohjingyu/gill" target="_blank">GitHub</a>
<br/>
<br/>
<strong>Tips:</strong>
<ul>
<li>Start by inputting either image or text prompts (or both) and chat with GILL to get image-and-text replies.</li>
<li>Tweak the level of sensitivity to images and text using the parameters on the right.</li>
<li>Check out cool conversations in the examples or community tab for inspiration and share your own!</li>
<li>If the model outputs a blank image, it is because Stable Diffusion's safety filter detected inappropriate content. Please try again with a different prompt.</li>
<li>Outputs may differ slightly from the paper due to slight implementation differences. For reproducing paper results, please use our <a href="https://github.com/kohjingyu/gill" target="_blank">official code</a>.</li>
<li>For faster inference without waiting in queue, you may duplicate the space and use your own GPU: <a href="https://huggingface.co/spaces/jykoh/gill?duplicate=true"><img style="display: inline-block; margin-top: 0em; margin-bottom: 0em" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></li>
</ul>
""")
gr_state = gr.State([[], []]) # conversation, chat_history
with gr.Row():
with gr.Column(scale=0.7, min_width=500):
with gr.Row():
chatbot = gr.Chatbot(elem_id="chatbot", label="🐟 GILL Chatbot")
with gr.Row():
image_btn = gr.UploadButton("πŸ–ΌοΈ Upload Image", file_types=["image"])
text_input = gr.Textbox(label="Message", placeholder="Type a message")
with gr.Column():
submit_btn = gr.Button(
"Submit", interactive=True, variant="primary")
clear_last_btn = gr.Button("Undo")
clear_btn = gr.Button("Reset All")
with gr.Row(visible=False) as save_group:
save_button = gr.Button("πŸ’Ύ Save Conversation as .png", elem_id="save-btn")
with gr.Row(visible=False) as share_group:
share_button = gr.Button("πŸ€— Share to Community (opens new window)", elem_id="share-btn")
with gr.Column(scale=0.3, min_width=400):
ret_scale_factor = gr.Slider(minimum=0.0, maximum=3.0, value=1.3, step=0.1, interactive=True,
label="Frequency multiplier for returning images (higher means more frequent)")
# max_ret_images = gr.Number(
# minimum=0, maximum=3, value=2, precision=1, interactive=True, label="Max images to return")
gr_max_len = gr.Slider(minimum=1, maximum=64, value=32,
step=1, interactive=True, label="Max # of words")
gr_temperature = gr.Slider(
minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True, label="Temperature (0 for deterministic, higher for more randomness)")
gallery = gr.Gallery(
value=[Image.open(e) for e in examples], label="Example Conversations", show_label=True, elem_id="gallery") #, grid=[2], height="auto")
text_input.submit(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
text_input.submit(lambda: "", None, text_input) # Reset chatbox.
submit_btn.click(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
submit_btn.click(lambda: "", None, text_input) # Reset chatbox.
image_btn.upload(upload_image, [gr_state, image_btn], [gr_state, chatbot])
clear_last_btn.click(reset_last, [gr_state], [gr_state, chatbot])
clear_btn.click(reset, [], [gr_state, chatbot])
# share_button.click(None, [], [], _js=share_js)
# save_button.click(None, [], [], _js=save_js)
demo.queue(api_open=False, max_size=16)
demo.launch(debug=True, server_name="0.0.0.0")
# demo.launch(debug=True, server_name="127.0.0.1")