Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
import logging | |
import sys | |
import os | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
logging.basicConfig( | |
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", | |
datefmt="%Y-%m-%d %H:%M:%S", | |
level=os.environ.get("LOGLEVEL", "DEBUG").upper(), | |
stream=sys.stdout, | |
) | |
logger = logging.getLogger("APP") | |
import time | |
import os | |
import gradio as gr | |
import utils | |
import argparse | |
import commons | |
from models import SynthesizerTrn | |
from text import text_to_sequence | |
import torch | |
from torch import no_grad, LongTensor | |
import webbrowser | |
import gradio.processing_utils as gr_processing_utils | |
from gradio_client import utils as client_utils | |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces | |
audio_postprocess_ori = gr.Audio.postprocess | |
def audio_postprocess(self, y): | |
data = audio_postprocess_ori(self, y) | |
if data is None: | |
return None | |
return client_utils.encode_url_or_file_to_base64(data["name"]) | |
gr.Audio.postprocess = audio_postprocess | |
def get_text(text, hps): | |
text_norm, clean_text = text_to_sequence(text, hps.symbols, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = LongTensor(text_norm) | |
return text_norm, clean_text | |
def vits(text, language, speaker_id, noise_scale, noise_scale_w, length_scale): | |
start = time.perf_counter() | |
if not len(text): | |
return "输入文本不能为空!", None, None | |
text = text.replace('\n', ' ').replace('\r', '').replace(" ", "") | |
if len(text) > 200 and limitation: | |
return f"输入文字过长!{len(text)}>100", None, None | |
if language == 0: | |
text = f"[ZH]{text}[ZH]" | |
elif language == 1: | |
text = f"[JA]{text}[JA]" | |
else: | |
text = f"{text}" | |
stn_tst, clean_text = get_text(text, hps_ms) | |
with no_grad(): | |
x_tst = stn_tst.unsqueeze(0).to(device) | |
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device) | |
speaker_id = LongTensor([speaker_id]).to(device) | |
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=speaker_id, noise_scale=noise_scale, noise_scale_w=noise_scale_w, | |
length_scale=length_scale)[0][0, 0].data.cpu().float().numpy() | |
with os.popen('free') as f: | |
logger.info(f.read()) | |
return "生成成功!", (22050, audio), f"生成耗时 {round(time.perf_counter()-start, 2)} s" | |
def search_speaker(search_value): | |
for s in speakers: | |
if search_value == s: | |
return s | |
for s in speakers: | |
if search_value in s: | |
return s | |
def change_lang(language): | |
if language == 0: | |
return 0.6, 0.668, 1.2 | |
else: | |
return 0.6, 0.668, 1.1 | |
download_audio_js = """ | |
() =>{{ | |
let root = document.querySelector("body > gradio-app"); | |
if (root.shadowRoot != null) | |
root = root.shadowRoot; | |
let audio = root.querySelector("#tts-audio").querySelector("audio"); | |
let text = root.querySelector("#input-text").querySelector("textarea"); | |
if (audio == undefined) | |
return; | |
text = text.value; | |
if (text == undefined) | |
text = Math.floor(Math.random()*100000000); | |
audio = audio.src; | |
let oA = document.createElement("a"); | |
oA.download = text.substr(0, 20)+'.wav'; | |
oA.href = audio; | |
document.body.appendChild(oA); | |
oA.click(); | |
oA.remove(); | |
}} | |
""" | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--api', action="store_true", default=True) | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
parser.add_argument("--colab", action="store_true", default=False, help="share gradio app") | |
args = parser.parse_args() | |
device = torch.device(args.device) | |
hps_ms = utils.get_hparams_from_file(r'./model/config.json') | |
net_g_ms = SynthesizerTrn( | |
len(hps_ms.symbols), | |
hps_ms.data.filter_length // 2 + 1, | |
hps_ms.train.segment_size // hps_ms.data.hop_length, | |
n_speakers=hps_ms.data.n_speakers, | |
**hps_ms.model) | |
_ = net_g_ms.eval().to(device) | |
speakers = hps_ms.speakers | |
speakers = [f"{i}.{s}" for i, s in enumerate(speakers)] | |
model, optimizer, learning_rate, epochs = utils.load_checkpoint(r'./model/G_953000.pth', net_g_ms, None) | |
with gr.Blocks() as app: | |
gr.Markdown( | |
"# <center> VITS语音在线合成\n" | |
) | |
with gr.Tabs(): | |
with gr.TabItem("vits"): | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Text (200 words limitation) " if limitation else "Text", lines=5, value="可莉不知道喔。", elem_id=f"input-text") | |
btn = gr.Button(value="Submit") | |
with gr.Row(): | |
lang = gr.Dropdown(label="Language", choices=["中文", "日语", "中日混合(中文用[ZH][ZH]包裹起来,日文用[JA][JA]包裹起来)"], | |
type="index", value="中文") | |
sid = gr.Dropdown(label="Speaker", choices=speakers, type="index", value=speakers[329]) | |
with gr.Row(): | |
ns = gr.Slider(label="noise_scale(控制感情变化程度)", minimum=0.1, maximum=1.0, step=0.1, value=0.1, interactive=True) | |
nsw = gr.Slider(label="noise_scale_w(控制音素发音长度)", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True) | |
ls = gr.Slider(label="length_scale(控制整体语速)", minimum=0.1, maximum=2.0, step=0.1, value=1.2, interactive=True) | |
with gr.Row(): | |
search = gr.Textbox(label="Search Speaker", lines=1) | |
btn2 = gr.Button(value="Search") | |
with gr.Column(): | |
o1 = gr.Textbox(label="Output Message") | |
o2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio") | |
o3 = gr.Textbox(label="Extra Info") | |
download = gr.Button("Download Audio") | |
btn.click(vits, inputs=[input_text, lang, sid, ns, nsw, ls], outputs=[o1, o2, o3]) | |
download.click(None, [], [], _js=download_audio_js.format()) | |
btn2.click(search_speaker, inputs=[search], outputs=[sid]) | |
lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls]) | |
with gr.TabItem("可用人物一览"): | |
gr.Radio(label="Speaker", choices=speakers, interactive=False, type="index") | |
if args.colab: | |
webbrowser.open("http://127.0.0.1:7860") | |
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share) | |