jwlarocque's picture
Create DIS-SAM space
ab7d699
import math
import torch
from torch.optim.optimizer import Optimizer
class AdamS(Optimizer):
r"""Implements Adam with stable weight decay (AdamS) algorithm.
It has be proposed in
`Stable Weight Decay Regularization`__.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay coefficient (default: 1e-4)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=1e-4, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad)
super(AdamS, self).__init__(params, defaults)
def __setstate__(self, state):
super(AdamS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
param_size = 0
exp_avg_sq_hat_sum = 0.
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
param_size += p.numel()
# Perform optimization step
grad = p.grad
if grad.is_sparse:
raise RuntimeError('AdamS does not support sparse gradients')
amsgrad = group['amsgrad']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
beta1, beta2 = group['betas']
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
state['step'] += 1
bias_correction2 = 1 - beta2 ** state['step']
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
exp_avg_sq_hat = max_exp_avg_sq / bias_correction2
else:
exp_avg_sq_hat = exp_avg_sq / bias_correction2
exp_avg_sq_hat_sum += exp_avg_sq_hat.sum()
# Calculate the sqrt of the mean of all elements in exp_avg_sq_hat
exp_avg_mean_sqrt = math.sqrt(exp_avg_sq_hat_sum / param_size)
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
#Perform stable weight decay
if group['weight_decay'] !=0:
p.data.mul_(1 - group['weight_decay'] * group['lr'] / exp_avg_mean_sqrt)
beta1, beta2 = group['betas']
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
exp_avg_sq_hat = max_exp_avg_sq / bias_correction2
else:
exp_avg_sq_hat = exp_avg_sq / bias_correction2
denom = exp_avg_sq_hat.sqrt().add(group['eps'])
step_size = group['lr'] / bias_correction1
p.addcdiv_(exp_avg, denom, value= - step_size)
return loss