Spaces:
Sleeping
Sleeping
actual fix hopefully
Browse files
app.py
CHANGED
@@ -1,14 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
# import lightning
|
4 |
from minicons import cwe
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
|
8 |
from model import FeatureNormPredictor
|
9 |
|
10 |
-
import sys
|
11 |
-
sys.path.insert(0, '/home/jjr4354/semantic-features')
|
12 |
|
13 |
def predict (word, sentence, lm_name, layer, norm):
|
14 |
if word not in sentence: return "invalid input: word not in sentence"
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
|
|
3 |
from minicons import cwe
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
|
7 |
from model import FeatureNormPredictor
|
8 |
|
|
|
|
|
9 |
|
10 |
def predict (word, sentence, lm_name, layer, norm):
|
11 |
if word not in sentence: return "invalid input: word not in sentence"
|
model.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import lightning
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
from typing import Any, Dict
|
5 |
+
import argparse
|
6 |
+
from pydantic import BaseModel
|
7 |
+
from get_dataset_dictionaries import get_dict_pair
|
8 |
+
import os
|
9 |
+
import shutil
|
10 |
+
|
11 |
+
import optuna
|
12 |
+
from optuna.integration import PyTorchLightningPruningCallback
|
13 |
+
from functools import partial
|
14 |
+
|
15 |
+
class FFNModule(torch.nn.Module):
|
16 |
+
"""
|
17 |
+
A pytorch module that regresses from a hidden state representation of a word
|
18 |
+
to its continuous linguistic feature norm vector.
|
19 |
+
|
20 |
+
It is a FFN with the general structure of:
|
21 |
+
input -> (linear -> nonlinearity -> dropout) x (num_layers - 1) -> linear -> output
|
22 |
+
"""
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
input_size: int,
|
26 |
+
output_size: int,
|
27 |
+
hidden_size: int,
|
28 |
+
num_layers: int,
|
29 |
+
dropout: float,
|
30 |
+
):
|
31 |
+
super(FFNModule, self).__init__()
|
32 |
+
|
33 |
+
layers = []
|
34 |
+
for _ in range(num_layers - 1):
|
35 |
+
layers.append(torch.nn.Linear(input_size, hidden_size))
|
36 |
+
layers.append(torch.nn.ReLU())
|
37 |
+
layers.append(torch.nn.Dropout(dropout))
|
38 |
+
# changes input size to hidden size after first layer
|
39 |
+
input_size = hidden_size
|
40 |
+
layers.append(torch.nn.Linear(hidden_size, output_size))
|
41 |
+
self.network = torch.nn.Sequential(*layers)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
return self.network(x)
|
45 |
+
|
46 |
+
class FFNParams(BaseModel):
|
47 |
+
input_size: int
|
48 |
+
output_size: int
|
49 |
+
hidden_size: int
|
50 |
+
num_layers: int
|
51 |
+
dropout: float
|
52 |
+
|
53 |
+
class TrainingParams(BaseModel):
|
54 |
+
num_epochs: int
|
55 |
+
batch_size: int
|
56 |
+
learning_rate: float
|
57 |
+
weight_decay: float
|
58 |
+
|
59 |
+
class FeatureNormPredictor(lightning.LightningModule):
|
60 |
+
def __init__(self, ffn_params : FFNParams, training_params : TrainingParams):
|
61 |
+
super().__init__()
|
62 |
+
self.save_hyperparameters()
|
63 |
+
self.ffn_params = ffn_params
|
64 |
+
self.training_params = training_params
|
65 |
+
self.model = FFNModule(**ffn_params.model_dump())
|
66 |
+
self.loss_function = torch.nn.MSELoss()
|
67 |
+
self.training_params = training_params
|
68 |
+
|
69 |
+
def training_step(self, batch, batch_idx):
|
70 |
+
x,y = batch
|
71 |
+
outputs = self.model(x)
|
72 |
+
loss = self.loss_function(outputs, y)
|
73 |
+
self.log("train_loss", loss)
|
74 |
+
return loss
|
75 |
+
|
76 |
+
def validation_step(self, batch, batch_idx):
|
77 |
+
x,y = batch
|
78 |
+
outputs = self.model(x)
|
79 |
+
loss = self.loss_function(outputs, y)
|
80 |
+
self.log("val_loss", loss, on_epoch=True, prog_bar=True)
|
81 |
+
return loss
|
82 |
+
|
83 |
+
def test_step(self, batch, batch_idx):
|
84 |
+
return self.model(batch)
|
85 |
+
|
86 |
+
def predict(self, batch):
|
87 |
+
return self.model(batch)
|
88 |
+
|
89 |
+
def __call__(self, input):
|
90 |
+
return self.model(input)
|
91 |
+
|
92 |
+
def configure_optimizers(self):
|
93 |
+
optimizer = torch.optim.Adam(
|
94 |
+
self.parameters(),
|
95 |
+
lr=self.training_params.learning_rate,
|
96 |
+
weight_decay=self.training_params.weight_decay,
|
97 |
+
)
|
98 |
+
return optimizer
|
99 |
+
|
100 |
+
def save_model(self, path: str):
|
101 |
+
torch.save(self.model.state_dict(), path)
|
102 |
+
|
103 |
+
def load_model(self, path: str):
|
104 |
+
self.model.load_state_dict(torch.load(path))
|
105 |
+
|
106 |
+
|
107 |
+
class HiddenStateFeatureNormDataset(Dataset):
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
input_embeddings: Dict[str, torch.Tensor],
|
111 |
+
feature_norms: Dict[str, torch.Tensor],
|
112 |
+
):
|
113 |
+
|
114 |
+
# Invariant: input_embeddings and target_feature_norms have exactly the same keys
|
115 |
+
# this should be done by the train/test split and upstream data processing
|
116 |
+
assert(input_embeddings.keys() == feature_norms.keys())
|
117 |
+
|
118 |
+
self.words = list(input_embeddings.keys())
|
119 |
+
self.input_embeddings = torch.stack([
|
120 |
+
input_embeddings[word] for word in self.words
|
121 |
+
])
|
122 |
+
self.feature_norms = torch.stack([
|
123 |
+
feature_norms[word] for word in self.words
|
124 |
+
])
|
125 |
+
|
126 |
+
def __len__(self):
|
127 |
+
return len(self.words)
|
128 |
+
|
129 |
+
def __getitem__(self, idx):
|
130 |
+
return self.input_embeddings[idx], self.feature_norms[idx]
|
131 |
+
|
132 |
+
# this is used when not optimizing
|
133 |
+
def train(args : Dict[str, Any]):
|
134 |
+
|
135 |
+
# input_embeddings = torch.load(args.input_embeddings)
|
136 |
+
# feature_norms = torch.load(args.feature_norms)
|
137 |
+
# words = list(input_embeddings.keys())
|
138 |
+
|
139 |
+
input_embeddings, feature_norms, norm_list = get_dict_pair(
|
140 |
+
args.norm,
|
141 |
+
args.embedding_dir,
|
142 |
+
args.lm_layer,
|
143 |
+
translated= False if args.raw_buchanan else True,
|
144 |
+
normalized= True if args.normal_buchanan else False
|
145 |
+
)
|
146 |
+
norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
|
147 |
+
norms_file.write("\n".join(norm_list))
|
148 |
+
norms_file.close()
|
149 |
+
|
150 |
+
words = list(input_embeddings.keys())
|
151 |
+
|
152 |
+
model = FeatureNormPredictor(
|
153 |
+
FFNParams(
|
154 |
+
input_size=input_embeddings[words[0]].shape[0],
|
155 |
+
output_size=feature_norms[words[0]].shape[0],
|
156 |
+
hidden_size=args.hidden_size,
|
157 |
+
num_layers=args.num_layers,
|
158 |
+
dropout=args.dropout,
|
159 |
+
),
|
160 |
+
TrainingParams(
|
161 |
+
num_epochs=args.num_epochs,
|
162 |
+
batch_size=args.batch_size,
|
163 |
+
learning_rate=args.learning_rate,
|
164 |
+
weight_decay=args.weight_decay,
|
165 |
+
),
|
166 |
+
)
|
167 |
+
|
168 |
+
# train/val split
|
169 |
+
train_size = int(len(words) * 0.8)
|
170 |
+
valid_size = len(words) - train_size
|
171 |
+
train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
|
172 |
+
|
173 |
+
# TODO: Methodology Decision: should we be normalizing the hidden states/feature norms?
|
174 |
+
train_embeddings = {word: input_embeddings[word] for word in train_words}
|
175 |
+
train_feature_norms = {word: feature_norms[word] for word in train_words}
|
176 |
+
validation_embeddings = {word: input_embeddings[word] for word in validation_words}
|
177 |
+
validation_feature_norms = {word: feature_norms[word] for word in validation_words}
|
178 |
+
|
179 |
+
train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
|
180 |
+
train_dataloader = torch.utils.data.DataLoader(
|
181 |
+
train_dataset,
|
182 |
+
batch_size=args.batch_size,
|
183 |
+
shuffle=True,
|
184 |
+
)
|
185 |
+
validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
|
186 |
+
validation_dataloader = torch.utils.data.DataLoader(
|
187 |
+
validation_dataset,
|
188 |
+
batch_size=args.batch_size,
|
189 |
+
shuffle=True,
|
190 |
+
)
|
191 |
+
|
192 |
+
callbacks = [
|
193 |
+
lightning.pytorch.callbacks.ModelCheckpoint(
|
194 |
+
save_last=True,
|
195 |
+
dirpath=args.save_dir,
|
196 |
+
filename=args.save_model_name,
|
197 |
+
),
|
198 |
+
]
|
199 |
+
if args.early_stopping is not None:
|
200 |
+
callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
|
201 |
+
monitor="val_loss",
|
202 |
+
patience=args.early_stopping,
|
203 |
+
mode='min',
|
204 |
+
min_delta=0.0
|
205 |
+
))
|
206 |
+
|
207 |
+
#TODO Design Decision - other trainer args? Is device necessary?
|
208 |
+
# cpu is fine for the scale of this model - only a few layers and a few hundred words
|
209 |
+
trainer = lightning.Trainer(
|
210 |
+
max_epochs=args.num_epochs,
|
211 |
+
callbacks=callbacks,
|
212 |
+
accelerator="cpu",
|
213 |
+
log_every_n_steps=7
|
214 |
+
)
|
215 |
+
|
216 |
+
trainer.fit(model, train_dataloader, validation_dataloader)
|
217 |
+
|
218 |
+
trainer.validate(model, validation_dataloader)
|
219 |
+
|
220 |
+
return model
|
221 |
+
|
222 |
+
# this is used when optimizing
|
223 |
+
def objective(trial: optuna.trial.Trial, args: Dict[str, Any]) -> float:
|
224 |
+
# optimizing hidden size, batch size, and learning rate
|
225 |
+
input_embeddings, feature_norms, norm_list = get_dict_pair(
|
226 |
+
args.norm,
|
227 |
+
args.embedding_dir,
|
228 |
+
args.lm_layer,
|
229 |
+
translated= False if args.raw_buchanan else True,
|
230 |
+
normalized= True if args.normal_buchanan else False
|
231 |
+
)
|
232 |
+
norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
|
233 |
+
norms_file.write("\n".join(norm_list))
|
234 |
+
norms_file.close()
|
235 |
+
|
236 |
+
words = list(input_embeddings.keys())
|
237 |
+
input_size=input_embeddings[words[0]].shape[0]
|
238 |
+
output_size=feature_norms[words[0]].shape[0]
|
239 |
+
min_size = min(output_size, input_size)
|
240 |
+
max_size = min(output_size, 2*input_size)if min_size == input_size else min(2*output_size, input_size)
|
241 |
+
hidden_size = trial.suggest_int("hidden_size", min_size, max_size, log=True)
|
242 |
+
batch_size = trial.suggest_int("batch_size", 16, 128, log=True)
|
243 |
+
learning_rate = trial.suggest_float("learning_rate", 1e-6, 1, log=True)
|
244 |
+
|
245 |
+
model = FeatureNormPredictor(
|
246 |
+
FFNParams(
|
247 |
+
input_size=input_size,
|
248 |
+
output_size=output_size,
|
249 |
+
hidden_size=hidden_size,
|
250 |
+
num_layers=args.num_layers,
|
251 |
+
dropout=args.dropout,
|
252 |
+
),
|
253 |
+
TrainingParams(
|
254 |
+
num_epochs=args.num_epochs,
|
255 |
+
batch_size=batch_size,
|
256 |
+
learning_rate=learning_rate,
|
257 |
+
weight_decay=args.weight_decay,
|
258 |
+
),
|
259 |
+
)
|
260 |
+
|
261 |
+
# train/val split
|
262 |
+
train_size = int(len(words) * 0.8)
|
263 |
+
valid_size = len(words) - train_size
|
264 |
+
train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
|
265 |
+
|
266 |
+
train_embeddings = {word: input_embeddings[word] for word in train_words}
|
267 |
+
train_feature_norms = {word: feature_norms[word] for word in train_words}
|
268 |
+
validation_embeddings = {word: input_embeddings[word] for word in validation_words}
|
269 |
+
validation_feature_norms = {word: feature_norms[word] for word in validation_words}
|
270 |
+
|
271 |
+
train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
|
272 |
+
train_dataloader = torch.utils.data.DataLoader(
|
273 |
+
train_dataset,
|
274 |
+
batch_size=args.batch_size,
|
275 |
+
shuffle=True,
|
276 |
+
)
|
277 |
+
validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
|
278 |
+
validation_dataloader = torch.utils.data.DataLoader(
|
279 |
+
validation_dataset,
|
280 |
+
batch_size=args.batch_size,
|
281 |
+
shuffle=True,
|
282 |
+
)
|
283 |
+
|
284 |
+
callbacks = [
|
285 |
+
# all trial models will be saved in temporary directory
|
286 |
+
lightning.pytorch.callbacks.ModelCheckpoint(
|
287 |
+
save_last=True,
|
288 |
+
dirpath=os.path.join(args.save_dir,'optuna_trials'),
|
289 |
+
filename="{}".format(trial.number)
|
290 |
+
),
|
291 |
+
]
|
292 |
+
|
293 |
+
if args.prune is not None:
|
294 |
+
callbacks.append(PyTorchLightningPruningCallback(
|
295 |
+
trial,
|
296 |
+
monitor='val_loss'
|
297 |
+
))
|
298 |
+
|
299 |
+
if args.early_stopping is not None:
|
300 |
+
callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
|
301 |
+
monitor="val_loss",
|
302 |
+
patience=args.early_stopping,
|
303 |
+
mode='min',
|
304 |
+
min_delta=0.0
|
305 |
+
))
|
306 |
+
# note that if optimizing is chosen, will automatically not implement vanilla early stopping
|
307 |
+
#TODO Design Decision - other trainer args? Is device necessary?
|
308 |
+
# cpu is fine for the scale of this model - only a few layers and a few hundred words
|
309 |
+
trainer = lightning.Trainer(
|
310 |
+
max_epochs=args.num_epochs,
|
311 |
+
callbacks=callbacks,
|
312 |
+
accelerator="cpu",
|
313 |
+
log_every_n_steps=7,
|
314 |
+
# enable_checkpointing=False
|
315 |
+
)
|
316 |
+
|
317 |
+
trainer.fit(model, train_dataloader, validation_dataloader)
|
318 |
+
|
319 |
+
trainer.validate(model, validation_dataloader)
|
320 |
+
|
321 |
+
return trainer.callback_metrics['val_loss'].item()
|
322 |
+
|
323 |
+
if __name__ == "__main__":
|
324 |
+
# parse args
|
325 |
+
parser = argparse.ArgumentParser()
|
326 |
+
#TODO: Design Decision: Should we input paths, to the pre-extracted layers, or the model/layer we want to generate them from
|
327 |
+
# required inputs
|
328 |
+
parser.add_argument("--norm", type=str, required=True, help="feature norm set to use")
|
329 |
+
parser.add_argument("--embedding_dir", type=str, required=True, help=" directory containing embeddings")
|
330 |
+
parser.add_argument("--lm_layer", type=int, required=True, help="layer of embeddings to use")
|
331 |
+
# if user selects optimize, hidden_size, batch_size and learning_rate will be optimized.
|
332 |
+
parser.add_argument("--optimize", action="store_true", help="optimize hyperparameters for training")
|
333 |
+
parser.add_argument("--prune", action="store_true", help="prune unpromising trials when optimizing")
|
334 |
+
# optional hyperparameter specs
|
335 |
+
parser.add_argument("--num_layers", type=int, default=2, help="number of layers in FFN")
|
336 |
+
parser.add_argument("--hidden_size", type=int, default=100, help="hidden size of FFN")
|
337 |
+
parser.add_argument("--dropout", type=float, default=0.1, help="dropout rate of FFN")
|
338 |
+
# set this to at least 100 if doing early stopping
|
339 |
+
parser.add_argument("--num_epochs", type=int, default=10, help="number of epochs to train for")
|
340 |
+
parser.add_argument("--batch_size", type=int, default=32, help="batch size for training")
|
341 |
+
parser.add_argument("--learning_rate", type=float, default=0.001, help="learning rate for training")
|
342 |
+
parser.add_argument("--weight_decay", type=float, default=0.0, help="weight decay for training")
|
343 |
+
parser.add_argument("--early_stopping", type=int, default=None, help="number of epochs to wait for early stopping")
|
344 |
+
# optional dataset specs, for buchanan really
|
345 |
+
parser.add_argument('--raw_buchanan', action="store_true", help="do not use translated values for buchanan")
|
346 |
+
parser.add_argument('--normal_buchanan', action="store_true", help="use normalized features for buchanan")
|
347 |
+
# required for output
|
348 |
+
parser.add_argument("--save_dir", type=str, required=True, help="directory to save model to")
|
349 |
+
parser.add_argument("--save_model_name", type=str, required=True, help="name of model to save")
|
350 |
+
|
351 |
+
args = parser.parse_args()
|
352 |
+
|
353 |
+
if args.early_stopping is not None:
|
354 |
+
args.num_epochs = max(50, args.num_epochs)
|
355 |
+
|
356 |
+
torch.manual_seed(10)
|
357 |
+
|
358 |
+
if args.optimize:
|
359 |
+
# call optimizer code here
|
360 |
+
print("optimizing for learning rate, batch size, and hidden size")
|
361 |
+
pruner = optuna.pruners.MedianPruner() if args.prune else optuna.pruners.NopPruner()
|
362 |
+
sampler = optuna.samplers.TPESampler(seed=10)
|
363 |
+
|
364 |
+
study = optuna.create_study(direction='minimize', pruner=pruner, sampler=sampler)
|
365 |
+
study.optimize(partial(objective, args=args), n_trials = 100, timeout=600)
|
366 |
+
|
367 |
+
other_params = {
|
368 |
+
"num_layers": args.num_layers,
|
369 |
+
"num_epochs": args.num_epochs,
|
370 |
+
"dropout": args.dropout,
|
371 |
+
"weight_decay": args.weight_decay,
|
372 |
+
}
|
373 |
+
|
374 |
+
print("Number of finished trials: {}".format(len(study.trials)))
|
375 |
+
|
376 |
+
trial = study.best_trial
|
377 |
+
print("Best trial: "+str(trial.number))
|
378 |
+
|
379 |
+
|
380 |
+
print(" Validation Loss: {}".format(trial.value))
|
381 |
+
|
382 |
+
print(" Optimized Params: ")
|
383 |
+
for key, value in trial.params.items():
|
384 |
+
print(" {}: {}".format(key, value))
|
385 |
+
|
386 |
+
print(" User Defined Params: ")
|
387 |
+
for key, value in other_params.items():
|
388 |
+
print(" {}: {}".format(key, value))
|
389 |
+
|
390 |
+
print('saving best trial')
|
391 |
+
for filename in os.listdir(os.path.join(args.save_dir,'optuna_trials')):
|
392 |
+
if filename == "{}.ckpt".format(trial.number):
|
393 |
+
shutil.move(os.path.join(args.save_dir,'optuna_trials',filename), os.path.join(args.save_dir, "{}.ckpt".format(args.save_model_name)))
|
394 |
+
shutil.rmtree(os.path.join(args.save_dir,'optuna_trials'))
|
395 |
+
|
396 |
+
else:
|
397 |
+
model = train(args)
|
398 |
+
|