Implement app
Browse files- app.py +110 -0
- classification_model/svm_char_word.joblib +3 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from joblib import load
|
| 5 |
+
|
| 6 |
+
# Load the classifier only once during development (reload mode)
|
| 7 |
+
if gr.NO_RELOAD:
|
| 8 |
+
classifier = load(Path(__file__).parent / "classification_model" / "svm_char_word.joblib")
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def classify_text(text: str):
|
| 12 |
+
"""Classify Romansh text and return prediction with probabilities."""
|
| 13 |
+
if not text.strip():
|
| 14 |
+
return "Please enter some text to classify."
|
| 15 |
+
|
| 16 |
+
# Map predictions to readable language names
|
| 17 |
+
language_names = {
|
| 18 |
+
'rm-sursilv': 'Sursilvan',
|
| 19 |
+
'rm-vallader': 'Vallader',
|
| 20 |
+
'rm-rumgr': 'Rumantsch Grischun',
|
| 21 |
+
'rm-surmiran': 'Surmiran',
|
| 22 |
+
'rm-puter': 'Puter',
|
| 23 |
+
'rm-sutsilv': 'Sutsilvan',
|
| 24 |
+
'unknown': 'Unknown'
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
# Get class labels from the classifier
|
| 28 |
+
class_labels = classifier.classes_
|
| 29 |
+
|
| 30 |
+
# Try to get probabilities if available, otherwise use decision function
|
| 31 |
+
try:
|
| 32 |
+
probabilities = classifier.predict_proba([text])[0]
|
| 33 |
+
# Create result dictionary with probabilities
|
| 34 |
+
result = {}
|
| 35 |
+
for i, label in enumerate(class_labels):
|
| 36 |
+
readable_name = language_names.get(label, label)
|
| 37 |
+
result[readable_name] = float(probabilities[i])
|
| 38 |
+
except AttributeError:
|
| 39 |
+
# LinearSVC doesn't have predict_proba, use decision function instead
|
| 40 |
+
decision_scores = classifier.decision_function([text])[0]
|
| 41 |
+
# Convert decision scores to probabilities using softmax
|
| 42 |
+
import numpy as np
|
| 43 |
+
exp_scores = np.exp(decision_scores - np.max(decision_scores))
|
| 44 |
+
probabilities = exp_scores / np.sum(exp_scores)
|
| 45 |
+
|
| 46 |
+
result = {}
|
| 47 |
+
for i, label in enumerate(class_labels):
|
| 48 |
+
readable_name = language_names.get(label, label)
|
| 49 |
+
result[readable_name] = float(probabilities[i])
|
| 50 |
+
|
| 51 |
+
return result
|
| 52 |
+
|
| 53 |
+
# Read examples from the TSV file
|
| 54 |
+
import pandas as pd
|
| 55 |
+
import os
|
| 56 |
+
|
| 57 |
+
tsv_path = os.path.join(os.path.dirname(__file__), "..", "lemmatizer", "demo", "example_sentences.tsv")
|
| 58 |
+
df = pd.read_csv(tsv_path, sep='\t')
|
| 59 |
+
|
| 60 |
+
# Create a list of examples with their idiom labels
|
| 61 |
+
examples_data = []
|
| 62 |
+
for col in df.columns:
|
| 63 |
+
for sentence in df[col].dropna():
|
| 64 |
+
if sentence.strip(): # Skip empty sentences
|
| 65 |
+
examples_data.append((sentence, col))
|
| 66 |
+
|
| 67 |
+
# Create the examples list and labels
|
| 68 |
+
examples = [sentence for sentence, _ in examples_data]
|
| 69 |
+
example_labels = [f"[{idiom}:] {sentence}" for sentence, idiom in examples_data]
|
| 70 |
+
|
| 71 |
+
# Create the Gradio interface
|
| 72 |
+
with gr.Blocks(title="Romansh Idiom Classifier") as demo:
|
| 73 |
+
gr.Markdown("# Romansh Idiom Classifier")
|
| 74 |
+
gr.Markdown("Enter Romansh text to classify which idiom/variety it belongs to.")
|
| 75 |
+
|
| 76 |
+
with gr.Row():
|
| 77 |
+
with gr.Column():
|
| 78 |
+
text_input = gr.Textbox(
|
| 79 |
+
label="Romansh Text",
|
| 80 |
+
placeholder="Enter Romansh text here...",
|
| 81 |
+
lines=5,
|
| 82 |
+
max_lines=10
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
with gr.Column():
|
| 86 |
+
output = gr.Label(
|
| 87 |
+
label="Predicted Idiom",
|
| 88 |
+
num_top_classes=7
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Set up event handlers
|
| 92 |
+
text_input.change(fn=classify_text, inputs=text_input, outputs=output)
|
| 93 |
+
|
| 94 |
+
# Add examples from TSV file
|
| 95 |
+
gr.Examples(
|
| 96 |
+
examples=examples,
|
| 97 |
+
inputs=text_input,
|
| 98 |
+
label="Example Sentences",
|
| 99 |
+
example_labels=example_labels,
|
| 100 |
+
examples_per_page=100,
|
| 101 |
+
fn=classify_text,
|
| 102 |
+
outputs=output,
|
| 103 |
+
run_on_click=True,
|
| 104 |
+
cache_examples=True,
|
| 105 |
+
cache_mode='eager',
|
| 106 |
+
preload=0,
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
if __name__ == "__main__":
|
| 110 |
+
demo.launch()
|
classification_model/svm_char_word.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:580b6d0e0cc96adbcf322d67f4caa4e46e7c2afc8e14e8b32f00e1c77f93cd47
|
| 3 |
+
size 47463929
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
joblib
|
| 3 |
+
scikit-learn
|
| 4 |
+
pandas
|