|
from distutils.command.upload import upload |
|
import streamlit as st |
|
from io import StringIO |
|
from PIL import Image |
|
import pandas as pd |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torchvision.models as models |
|
|
|
import albumentations as A |
|
from albumentations.pytorch.transforms import ToTensorV2 |
|
|
|
import numpy as np |
|
|
|
import cv2 |
|
|
|
st.title('Dummy') |
|
uploaded_file = st.file_uploader('Select File') |
|
|
|
id2class = {0: 'agricultural', 1: 'airplane', 2: 'baseballdiamond', 3: 'beach', 4: 'buildings', 5: 'chaparral', 6: 'denseresidential', 7: 'forest', 8: 'freeway', 9: 'golfcourse', 10: 'intersection', 11: 'mediumresidential', 12: 'mobilehomepark', 13: 'overpass', 14: 'parkinglot', 15: 'river', 16: 'runway', 17: 'sparseresidential', 18: 'storagetanks', 19: 'tenniscourt', 20: 'harbor'} |
|
|
|
model = models.resnet50(weights=None) |
|
model.fc = nn.Linear(2048, 21) |
|
model.load_state_dict(torch.load('resnet_best.pth', map_location=torch.device('cpu')), strict=True) |
|
model.eval() |
|
|
|
if uploaded_file is not None: |
|
if '.jpg' in uploaded_file.name.lower() or '.png' in uploaded_file.name.lower(): |
|
st.write(uploaded_file.name) |
|
img = Image.open(uploaded_file) |
|
st.image(img) |
|
img = np.array(img) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
|
cust_transform = A.Compose([A.Resize(height=256, width=256, p=1.0),ToTensorV2(p=1.0)], p=1.0) |
|
tensor = cust_transform(image=img) |
|
tensor = tensor['image'].float().resize(1,3,256,256) |
|
|
|
custom_pred = model.forward(tensor).detach().numpy() |
|
custom_pred |
|
|
|
st.write(f'Predicted: {id2class[np.argmax(custom_pred)]}') |
|
elif '.csv' in uploaded_file.name: |
|
dataframe = pd.read_csv(uploaded_file) |
|
st.write(dataframe) |