juyal-sid commited on
Commit
0f01302
·
1 Parent(s): ef6f25c

Add application file

Browse files
Files changed (2) hide show
  1. app.py +65 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import streamlit as st
3
+ import requests
4
+
5
+ def fetch_poster(movie_id):
6
+ url = "https://api.themoviedb.org/3/movie/{}?api_key=8265bd1679663a7ea12ac168da84d2e8&language=en-US".format(movie_id)
7
+ data = requests.get(url)
8
+ data = data.json()
9
+ poster_path = data['poster_path']
10
+ full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
11
+ return full_path
12
+
13
+ def recommend(movie):
14
+ index = movies[movies['title'] == movie].index[0]
15
+ distances = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda x: x[1])
16
+ recommended_movie_names = []
17
+ recommended_movie_posters = []
18
+ for i in distances[1:6]:
19
+ # fetch the movie poster
20
+ movie_id = movies.iloc[i[0]].movie_id
21
+ recommended_movie_posters.append(fetch_poster(movie_id))
22
+ recommended_movie_names.append(movies.iloc[i[0]].title)
23
+
24
+ return recommended_movie_names,recommended_movie_posters
25
+
26
+ # page_bg_img = '''
27
+ # <style>
28
+ # .stApp {
29
+ # background-image: url("https://drive.google.com/file/d/1rEZIAcS6REse6nD8vouCbOdpi7XfHwXz/view?usp=sharing.jpg");
30
+ # background-size: cover;
31
+ # }
32
+ # </style>
33
+ # '''
34
+
35
+ # st.markdown(page_bg_img, unsafe_allow_html=True)
36
+
37
+ st.header('Movie Recommender System')
38
+ movies = pickle.load(open('./movie_list.pkl','rb'))
39
+ similarity = pickle.load(open('./similarity.pkl','rb'))
40
+
41
+ movie_list = movies['title'].values
42
+ selected_movie = st.selectbox(
43
+ "Type or select a movie from the dropdown",
44
+ movie_list
45
+ )
46
+
47
+ if st.button('Show Recommendation'):
48
+ recommended_movie_names,recommended_movie_posters = recommend(selected_movie)
49
+ col1, col2, col3, col4, col5 = st.columns(5)
50
+ with col1:
51
+ st.text(recommended_movie_names[0])
52
+ st.image(recommended_movie_posters[0])
53
+ with col2:
54
+ st.text(recommended_movie_names[1])
55
+ st.image(recommended_movie_posters[1])
56
+
57
+ with col3:
58
+ st.text(recommended_movie_names[2])
59
+ st.image(recommended_movie_posters[2])
60
+ with col4:
61
+ st.text(recommended_movie_names[3])
62
+ st.image(recommended_movie_posters[3])
63
+ with col5:
64
+ st.text(recommended_movie_names[4])
65
+ st.image(recommended_movie_posters[4])
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ numpy
4
+ sklearn
5
+ ast
6
+ pickle